21/9/16
Vectors - Lesson 5

The Scalar Product, Perpendicular Vectors and Angles between Vectors

LI

- Know how to calculate the Scalar Product of 2 vectors.

SC

- Arithmetic.
- 2 forms of the Scalar Product Formula.

Scalar Product

The Scalar Product (aka Dot Product) of vectors a and b is:

$$
\begin{aligned}
a \cdot b & =|a||b| \cos \theta \\
0^{\circ} & \leq \theta \leq 180^{\circ}
\end{aligned}
$$

> Vectors a and b must be pointing out from the same point

Component Form of the Scalar Product

$a \bullet b=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$
component form of scalar product

Important facts :

$$
\begin{array}{ll}
\mathbf{i} \bullet \mathbf{i}=1 & \mathbf{i} \bullet \mathbf{j}=0 \\
\mathbf{j} \bullet \mathbf{j}=1 & \mathbf{j} \bullet \mathbf{k}=0 \\
\mathbf{k} \bullet \mathbf{k}=1 & \mathbf{k} \bullet \mathbf{i}=0
\end{array}
$$

Example 1

Calculate $\mathbf{p} \cdot q$ for the following:

$$
\begin{aligned}
& |p|=4 \\
& |q|=2 \\
& \mathbf{p} \cdot \mathbf{q}=|\mathbf{p}||\mathbf{q}| \cos \theta \\
& \Rightarrow \mathrm{p} \cdot \mathrm{q}=4.2 \cdot \cos 30^{\circ} \\
& \Rightarrow p \cdot q=\frac{8 \sqrt{3}}{2} \\
& \Rightarrow p \cdot q=4 \sqrt{3}
\end{aligned}
$$

Example 2

A, B and C are the points with coordinates
$(3,2,1),(-6,0,2)$ and $(-2,-1,7)$ respectively.
Calculate the value of $\overrightarrow{A B} \bullet \overrightarrow{A C}$.

$$
\begin{aligned}
& \overrightarrow{A B}=\left(\begin{array}{c}
-9 \\
-2 \\
1
\end{array}\right) \\
& \overrightarrow{A C}=\left(\begin{array}{c}
-5 \\
-3 \\
6
\end{array}\right)
\end{aligned}
$$

$$
\overrightarrow{A B} \cdot \overrightarrow{A C}=(-9 \times-5)+(-2 \times-3)+(1 \times 6)
$$

$$
=45+6+6
$$

$$
=57
$$

Example 3

Calculate the angle between the vectors $\mathbf{u}=3 \mathbf{i}+2 \mathbf{j}-5 \mathbf{k}$ and $\mathbf{v}=4 \mathbf{i}+\mathbf{j}+3 \mathbf{k}$.

$$
\mathbf{u} \cdot \mathbf{v}=(3 \times 4)+(2 \times 1)+(-5 \times 3)
$$

$$
\Rightarrow u \cdot \mathbf{v}=12+2-15
$$

$$
\Rightarrow \underline{u} \cdot \mathbf{v}=-1
$$

The magnitude of u is,

$$
\begin{array}{rlrl}
& |\mathbf{u}| & =\sqrt{3^{2}+2^{2}+(-5)^{2}} \\
\Rightarrow \quad|u| & =\sqrt{9+4+25} \\
\Rightarrow \quad|u| & =\sqrt{38}
\end{array}
$$

The magnitude of v is,

As the angle between two vectors is always between 0° and $180^{\circ}, 268.2^{\circ}$ cannot be correct.

$$
\theta=91.8^{\circ}
$$

$$
\begin{aligned}
& |v|=\sqrt{4^{2}+1^{2}+3^{2}} \\
& \Rightarrow \quad|v|=\sqrt{16+1+9} \\
& \Rightarrow \quad|v|=\sqrt{26} \\
& \mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta \\
& \therefore \quad-1=\sqrt{38} \sqrt{26} \cos \theta \\
& \Rightarrow \cos \theta=-\frac{1}{\sqrt{38} \sqrt{26}} \\
& \therefore \quad R A=\cos ^{-1}\left(\frac{1}{\sqrt{38} \sqrt{26}}\right) \\
& \therefore \quad \mathrm{RA}=88.2 \ldots \circ \\
& \therefore \quad \theta=180^{\circ}-88.2^{\circ}, 180^{\circ}+88.2^{\circ} \\
& \Rightarrow \quad \theta=91.8^{\circ}, 268.2^{\circ}
\end{aligned}
$$

Example 4

Show that the vectors in Example 3 are not perpendicular.

$$
\begin{aligned}
& \text { As } \mathbf{u} \cdot \mathbf{v}=-1 \neq 0, \mathbf{u} \text { and } \mathbf{v} \\
& \text { are not perpendicular }
\end{aligned}
$$

Example 5

Given that $k \leq 0$, find k so that the vectors
$a=\left(\begin{array}{c}2 k \\ -1 \\ 3\end{array}\right) \quad$ and $\quad b=\left(\begin{array}{c}k \\ k \\ -2\end{array}\right)$
are perpendicular.
As a and b are perpendicular,

$$
\begin{array}{rlrl}
& \therefore(2 k \times k)+(-1 \times k)+(3 x-2) & =0 \\
\Rightarrow & 2 k^{2}-k-6 & =0 \\
\Rightarrow & (2 k+3)(k-2) & =0 \\
\therefore & \text { (2k }=-3 / 2,2
\end{array}
$$

CfE Higher Maths

pg. 119-120 Ex. 6B All Q
pg. 123-5 Ex. 6C All Q
pg. 127-8 Ex. 6D All Q

