21 / 9 / 16

Vectors - Lesson 5

The Scalar Product, Perpendicular Vectors and Angles between Vectors

LI

• Know how to calculate the Scalar Product of 2 vectors.

<u>SC</u>

- Arithmetic.
- 2 forms of the Scalar Product Formula.

Scalar Product

The Scalar Product (aka Dot Product) of vectors **a** and **b** is:

$$\mathbf{a} \bullet \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

$$0^{\circ} \leq \theta \leq 180^{\circ}$$

Vectors a and b must be pointing out from the same point

Component Form of the Scalar Product

If
$$\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ then:

$$\mathbf{a} \bullet \mathbf{b} = \mathbf{a}_{1} \mathbf{b}_{1} + \mathbf{a}_{2} \mathbf{b}_{2} + \mathbf{a}_{3} \mathbf{b}_{3}$$

component form of scalar product

Important facts:

$$\mathbf{i} \bullet \mathbf{i} = 1$$
 $\mathbf{i} \bullet \mathbf{j} = 0$

$$\mathbf{i} \bullet \mathbf{j} = \mathbf{0}$$

$$\mathbf{j} \bullet \mathbf{j} = 1$$

$$\mathbf{j} \bullet \mathbf{j} = 1$$
 $\mathbf{j} \bullet \mathbf{k} = 0$

$$k \bullet k = 1$$

$$\mathbf{k} \bullet \mathbf{k} = 1$$
 $\mathbf{k} \bullet \mathbf{i} = 0$

Calculate **p** • **q** for the following:

$$|\mathbf{p}| = 4$$
$$|\mathbf{q}| = 2$$

$$\mathbf{p} \cdot \mathbf{q} = |\mathbf{p}| |\mathbf{q}| \cos \theta$$

$$\Rightarrow$$
 $\mathbf{p} \cdot \mathbf{q} = 4.2 \cdot \cos 30^{\circ}$

$$\Rightarrow \quad \mathbf{p} \bullet \mathbf{q} = \frac{8\sqrt{3}}{2}$$

$$\Rightarrow \qquad \mathbf{p} \bullet \mathbf{q} = 4\sqrt{3}$$

A, B and C are the points with coordinates (3, 2, 1), (-6, 0, 2) and (-2, -1, 7) respectively.

Calculate the value of $\overrightarrow{AB} \bullet \overrightarrow{AC}$.

$$\overrightarrow{AB} = \begin{pmatrix} -9 \\ -2 \\ 1 \end{pmatrix}$$

$$\overrightarrow{AC} = \begin{pmatrix} -5 \\ -3 \\ 6 \end{pmatrix}$$

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = (-9 \times -5) + (-2 \times -3) + (1 \times 6)$$

$$= 45 + 6 + 6$$

$$= 57$$

Calculate the angle between the vectors

$$u = 3i + 2j - 5k$$
 and $v = 4i + j + 3k$.

$$\mathbf{u} \cdot \mathbf{v} = (3 \times 4) + (2 \times 1) + (-5 \times 3)$$

$$\Rightarrow$$
 $\mathbf{u} \bullet \mathbf{v} = 12 + 2 - 15$

$$\Rightarrow$$
 $\mathbf{u} \bullet \mathbf{v} = -1$

The magnitude of **u** is,

$$|\mathbf{u}| = \sqrt{3^2 + 2^2 + (-5)^2}$$

$$\Rightarrow$$
 | u | = $\sqrt{9 + 4 + 25}$

$$\Rightarrow$$
 | u | = $\sqrt{38}$

The magnitude of v is,

$$|v| = \sqrt{4^2 + 1^2 + 3^2}$$

$$\Rightarrow$$
 | \mathbf{v} | = $\sqrt{16 + 1 + 9}$

$$\Rightarrow$$
 | \mathbf{v} | $=$ $\sqrt{26}$

$$\mathbf{u} \bullet \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$$

$$\therefore -1 = \sqrt{38} \sqrt{26} \cos \theta$$

$$\Rightarrow$$
 cos $\theta = -\frac{1}{\sqrt{38}\sqrt{26}}$

$$\therefore \qquad \mathsf{RA} = \mathsf{cos}^{-1} \left(\frac{1}{\sqrt{38} \sqrt{26}} \right)$$

$$\therefore \qquad \mathsf{RA} = 88.2\dots^{\circ} \qquad \qquad \begin{array}{c|c} & & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

$$\therefore \qquad \quad \theta \ = \ 180^o \, - \, 88 \; . \; 2^o , \, 180^o \, + \, 88 \; . \; 2^o$$

$$\Rightarrow \qquad \theta = 91.8^{\circ}, 268.2^{\circ}$$

As the angle between two vectors is always between 0° and 180° , $268 \cdot 2^{\circ}$ cannot be correct.

$$\theta = 91.8^{\circ}$$

Show that the vectors in Example 3 are not perpendicular.

As $\mathbf{u} \cdot \mathbf{v} = -1 \neq 0$, \mathbf{u} and \mathbf{v} are not perpendicular

Given that $k \leq 0$, find k so that the vectors

$$\mathbf{a} = \begin{pmatrix} 2 & k \\ -1 & 3 \end{pmatrix} \quad \text{and} \quad \mathbf{b} = \begin{pmatrix} k & k \\ k & -2 \end{pmatrix}$$

are perpendicular.

As a and b are perpendicular,

$$a \cdot b = 0$$

$$\therefore (2 k \times k) + (-1 \times k) + (3 \times -2) = 0$$

$$\Rightarrow 2 k^2 - k - 6 = 0$$

$$\Rightarrow$$
 (2 k + 3) (k - 2) = 0

$$\frac{k = -3/2, 2}{}$$

As
$$k \le 0, k = -3/2$$

CfE Higher Maths

pg. 119-120 Ex. 6B All Q

pg. 123-5 Ex. 6C All Q

pg. 127-8 Ex. 6D All Q

