$10 / 11 / 17$

Unit 2 : Sequences and Series - Lesson 5

Infinite Series, Partial Sums and Infinite Geometric Series

LI

- Know what a Sum to Infinity is.
- Determine if a sum to infinity exists for an infinite geometric series.
- Calculate the sum to infinity for an infinite geometric series.
- Solve problems involving finite geometric series.

SC

- Sum to infinity formula.

An infinite series is obtained by adding infinitely many terms of a sequence

The partial sum of a sequence is the sum to n terms S_{n}

The sum to infinity (aka infinite sum) of a sequence is all the terms of the sequence added together; it is also given by the limit as $n \longrightarrow \infty$ of the partial sums:

$$
S_{\infty}=\lim _{n \rightarrow \infty} S_{n}
$$

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

Expanding brackets and rearranging gives S_{n} in the form,

$$
S_{n}=P n^{2}+Q n
$$

As $n \rightarrow \infty, S_{n} \rightarrow \pm \infty$. So,

$$
S_{\infty} \text { does not exist for an arithmetic series }
$$

S_{∞} for a Geometric Series

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}
$$

$$
r>1 \text { or } r<-1:
$$

As $n \rightarrow \infty, r^{n} \rightarrow \pm \infty$. So, $S_{n} \rightarrow \pm \infty$. Hence, S_{∞} does not exist.
$-1<r<1$:
As $n \rightarrow \infty, r^{n} \rightarrow 0$. So, $S_{n} \rightarrow \frac{a(1-0)}{1-r}=\frac{a}{1-r}$.

For a geometric series, S_{∞} exists provided

$$
\begin{aligned}
& \text { that }-1<r<1 \text { (ie. } \\
& S_{\infty}=\frac{a}{1-r}
\end{aligned}
$$

Example 1

Show that the sum to infinity for the geometric series $36+12+4+\ldots$ exists and hence find this sum.

We have $a=36$ and $r=4 / 12 \Rightarrow r=1 / 3$.

$$
\text { As }-1<1 / 3<1, S_{\infty} \text { exists }
$$

$$
S_{\infty}=\frac{a}{1-r}
$$

$$
\therefore \quad S_{\infty}=\frac{36}{1-(1 / 3)}
$$

$$
\Rightarrow \quad S_{\infty}=\frac{36}{2 / 3}
$$

$$
\therefore \quad S_{\infty}=54
$$

Example 2

Find the condition on x for the series $1+3 x+9 x^{2}+\ldots$ to have a sum to infinity.

$$
\begin{aligned}
9 x^{2} \div 3 x & =3 x \\
3 x \div 1 & =3 x
\end{aligned}
$$

A successive ratios are constant, the series is geometric. We also have $a=1$ and $r=3 \times S_{\infty}$ will exist if $|r|<1$, i.e. when,

$$
\begin{aligned}
& |3 x|<1 \\
& \Rightarrow \quad 3|x|<1 \\
& \Rightarrow \quad \underline{|x|<1 / 3}
\end{aligned}
$$

S_{∞} will exist if $|x|<\frac{1}{3}$, i.e. $-\frac{1}{3}<r<\frac{1}{3}$

Example 3

Write $0.363636 \ldots$ as a vulgar fraction in simplest form.

$$
\begin{aligned}
& 0.363636 \ldots=0.36+0.0036+0.000036+\ldots \\
\Rightarrow & 0.363636 \ldots=\frac{36}{10^{2}}+\frac{36}{10^{4}}+\frac{36}{10^{6}}+\ldots \\
\Rightarrow & 0.363636 \ldots=36\left(10^{-2}+10^{-4}+10^{-6}+\ldots\right)
\end{aligned}
$$

The bracketed term is a geometric series with common ratio 10^{-2} and first term 10^{-2}. As $-1<10^{-2}<1$, the sum to infinity exists. So,

$$
\begin{aligned}
& 0.363636 \ldots=36\left(\frac{10^{-2}}{1-10^{-2}}\right) \\
\Rightarrow & 0.363636 \ldots=36\left(\frac{1}{10^{2}-1}\right) \\
\Rightarrow & 0.363636 \ldots=\frac{36}{99} \\
\Rightarrow & 0.363636 \ldots=\frac{12}{33}
\end{aligned}
$$

Example 4

Write $\frac{1}{1-2 x}$ in the form $\sum_{r=0}^{\infty} k^{r} x^{r}$, stating the value of the real number k and the range of values of x for which the sum is valid.
$\frac{1}{1-2 x}$ is of the form of the infinite sum $\frac{a}{1-r}$, which is the limit of a geometric sequence with common ratio r and first term a (we have $a=1$ and $r=2 x$), provided $|r|<1$. The expansion will be valid provided that $|2 x|<1 \Rightarrow 2|x|<1$ $\Rightarrow|x|<1 / 2$. So, if this is the case,

$$
\begin{aligned}
\frac{1}{1-2 x} & =1+2 x+(2 x)^{2}+(2 x)^{3}+\ldots \\
\Rightarrow \quad & \frac{1}{1-2 x}
\end{aligned}=(2 x)^{0}+(2 x)^{1}+(2 x)^{2}+(2 x)^{3}+\ldots .
$$

$$
\Rightarrow \quad \frac{1}{1-2 x}=\sum_{r=0}^{\infty}(2 x)^{r}
$$

$$
\begin{gathered}
\frac{1}{1-2 x}=\sum_{r=0}^{\infty} 2^{r} x^{r} \\
\left(k=2,|x|<\frac{1}{2}\right)
\end{gathered}
$$

Example 5

Write $\frac{1}{5+x}$ in the form $\sum_{r=0}^{\infty}(-1)^{r} k^{r+1} x^{r}$, stating the value of the real number k and the range of values of x for which the sum is valid.

$$
\frac{1}{5+x}=\frac{1}{5(1+(x / 5))}=\frac{1}{5}\left(\frac{1}{1-(-x / 5)}\right)
$$

$\frac{1}{1-(-x / 5)}$ is of the form of the infinite sum $\frac{a}{1-r}$, which is the limit of a geometric sequence with common ratio r and first term a (we have $a=1$ and $r=-x / 5$), provided $|r|<1$. The expansion will be valid provided that $|-x / 5|<1$ $\Rightarrow|x / 5|<1 \Rightarrow(1 / 5)|x|<1 \Rightarrow|x|<5$; then,

$$
\frac{1}{5+x}=(1 / 5)\left(1+(-x / 5)+(-x / 5)^{2}+(-x / 5)^{3}+\ldots\right)
$$

$$
\Rightarrow \frac{1}{5+x}=(1 / 5) \sum_{r=0}^{\infty}(-x / 5)^{r}
$$

$$
\Rightarrow \frac{1}{5+x}=(1 / 5) \sum_{r=0}^{\infty}(-1)^{r}(1 / 5)^{r} x^{r}
$$

$$
\begin{gathered}
\frac{1}{5+x}=(1 / 5) \sum_{r=0}^{\infty}(-1)^{r}(1 / 5)^{r+1} x^{r} \\
\left(k=\frac{1}{5},|x|<5\right)
\end{gathered}
$$

$$
\begin{array}{r}
\text { AH Maths - MiA (2 }{ }^{\text {nd }} \text { Edn.) } \\
\text { • pg. 162-4 Ex. 9.5 } Q 1,2 a-c \\
3 a, 4 a, b, \\
5,7 a-f .
\end{array}
$$

Ex. 9.5

1 Find the sum to infinity of these infinite geometric progressions.
a $2+1+0.5+$...
b $100+20+4+\ldots$
c $8+2+0.5+\ldots$
d $9-3+1-\ldots$
e $500-100+20-\ldots$
f $147+21+3+\ldots$

2 Identify which of these geometric series tend to a limit and find the limit.
a $7+1+\frac{1}{7}+\ldots$
b $1+1.5+2.25+\ldots$
c $18+9+4.5+\ldots$

3 a A geometric series has a sum to infinity of 50 .
The common ratio is 0.6 .
What is the first term of the series?
4 a Express each of these recurring decimals as an infinite geometric series, and hence as a vulgar fraction in its simplest form.
i 0.282828...
ii 0.345345...
iii 0.041414...
b By considering a sum to infinity, show that 0.99999 ... is mathematically equivalent to 1 .
5 Given that numbers 75 and 18.75 are adjacent terms of an infinite geometric series with a sum to infinity o 6400, find
a the first term
b the partial sum S_{5}.
7 Identify for what range of values of x these series have a sum to infinity.
a $3+3 x+3 x^{2}+\ldots$
b $16+8 x+4 x^{2}+\ldots$
c $\frac{1}{x}+4+16 x+\ldots, x \neq 0$
d $5+20 \sqrt{x}+80 x+\ldots$
e $2+\frac{6}{x}+\frac{18}{x^{2}}+\ldots$
f $32 x^{10}+8 x^{8}+2 x^{6}+\ldots$

Answers to AH Maths (MiA), pg. 162-4, Ex. 9.5
1 a 4
b 125
c $\quad 10 \frac{2}{3}$
d $6 \frac{3}{4}$
e $416 \frac{2}{3}$
f $\quad 171 \frac{1}{2}$
2 a $8 \frac{1}{6}$
b No limit
c 36

3 a 20
4 a i $\frac{28}{99} \quad$ ii $\frac{115}{333}$ iii $\frac{41}{990}$
b $0.9+0.09+0.009+\ldots a=0.9, r=0.1 \Rightarrow S_{\infty}=1$
$\begin{array}{llll}5 & \text { a } & 4800 & \text { b } \quad 6393.75\end{array}$
7 a $\quad-1<x<1$
b $-2<x<2$
c $\quad-\frac{1}{4}<x<\frac{1}{4}$
d $0<x<\frac{1}{16}$
e $\quad x<-3$ or $x>3$
f $\quad x<-\frac{1}{2}$ or $x>\frac{1}{2}$

1) Write $\frac{1}{1-7 x}$ in the form $\sum_{r=0}^{\infty} k^{r} x^{r}$, stating the value of the real number k and the range of values of x for which the sum is valid.
2) Write $\frac{1}{6+x}$ in the form $\sum_{r=0}^{\infty}(-1)^{r} k^{r+1} x^{r}$, stating the value of the real number k and the range of values of x for which the sum is valid.
3) Write $\frac{4}{9+x}$ in the form $\sum_{r=0}^{\infty} p(-1)^{r} k^{r+1} x^{r}$, stating the value of the real numbers p and k and the range of values of x for which the sum is valid.
4) $\frac{1}{1-7 x}=\sum_{r=0}^{\infty} 7^{r} x^{r} \quad\left(k=7,|x|<\frac{1}{7}\right)$
5) $\frac{1}{6+x}=\sum_{r=0}^{\infty}(-1)^{r}(1 / 6)^{r+1} x^{r} \quad\left(k=\frac{1}{6},|x|<6\right)$
6) $\frac{4}{9+x}=\sum_{r=0}^{\infty} 4(-1)^{r} 9^{-(r+1)} x^{r} \quad(p=4, k=9,|x|<9)$
