10 / 11 / 17

Unit 2 : Sequences and Series - Lesson 5

Infinite Series, Partial Sums and Infinite Geometric Series

LI

- Know what a Sum to Infinity is.
- Determine if a sum to infinity exists for an infinite geometric series.
- Calculate the sum to infinity for an infinite geometric series.
- Solve problems involving finite geometric series.

SC

• Sum to infinity formula.

An infinite series is obtained by adding infinitely many terms of a sequence

The partial sum of a sequence is the sum to n terms S_n

The sum to infinity (aka infinite sum) of a sequence is all the terms of the sequence added together; it is also given by the limit as $n \rightarrow \infty$ of the partial sums:

$$S_{\infty} = \lim_{n \to \infty} S_n$$

S_{∞} for an Arithmetic Series

$$S_n = \frac{n}{2} [2 a + (n - 1) d]$$

Expanding brackets and rearranging gives S_n in the form,

$$S_n = P n^2 + Q n$$

As
$$n \rightarrow \infty$$
, $S_n \rightarrow \pm \infty$. So,

S. does not exist for an arithmetic series

S_m for a Geometric Series

$$S_n = \frac{a(1 - r^n)}{1 - r}$$

r > 1 or r < -1:

As $n \to \infty$, $r^n \to \pm \infty$. So, $S_n \to \pm \infty$. Hence, S_∞ does not exist.

-1 < r < 1:

As
$$n \to \infty$$
, $r^n \to 0$. So, $S_n \to \frac{a(1-0)}{1-r} = \frac{a}{1-r}$.

For a geometric series, S_{∞} exists provided that -1 < r < 1 (i.e. |r| < 1):

$$S_{\infty} = \frac{a}{1 - r}$$

Show that the sum to infinity for the geometric series $36 + 12 + 4 + \dots$ exists and hence find this sum.

We have a = 36 and $r = 4/12 \Rightarrow r = 1/3$.

As
$$-1 < 1/3 < 1, S_{\infty}$$
 exists

$$S_{\infty} = \frac{a}{1 - r}$$

$$\therefore S_{\infty} = \frac{36}{1 - (1/3)}$$

$$\Rightarrow$$
 $S_{\infty} = \frac{36}{2/3}$

Find the condition on x for the series $1 + 3x + 9x^2 + ...$ to have a sum to infinity.

$$9 x^{2} \div 3 x = 3 x$$

 $3 x \div 1 = 3 x$

A successive ratios are constant, the series is geometric. We also have a = 1 and $r = 3 \times .5$ will exist if |r| < 1, i.e. when,

$$|3 x| < 1$$

$$\Rightarrow 3 |x| < 1$$

$$\Rightarrow |x| < 1/3$$

$$S_{\infty}$$
 will exist if $|x| < \frac{1}{3}$, i.e. $-\frac{1}{3} < r < \frac{1}{3}$

Write 0.363 636 . . . as a vulgar fraction in simplest form.

$$0.363636... = 0.36 + 0.0036 + 0.000036 + ...$$

$$\Rightarrow$$
 0.363636... = $\frac{36}{10^2} + \frac{36}{10^4} + \frac{36}{10^6} + ...$

$$\Rightarrow$$
 0.363636... = 36(10⁻² + 10⁻⁴ + 10⁻⁶ + ...)

The bracketed term is a geometric series with common ratio 10^{-2} and first term 10^{-2} . As $-1 < 10^{-2} < 1$, the sum to infinity exists. So,

$$0.363636... = 36 \left(\frac{10^{-2}}{1-10^{-2}}\right)$$

$$\Rightarrow$$
 0.363 636... = 36 $\left(\frac{1}{10^2 - 1}\right)$

$$\Rightarrow$$
 0.363636... = $\frac{36}{99}$

$$\Rightarrow 0.363636... = \frac{12}{33}$$

Write $\frac{1}{1-2x}$ in the form $\sum_{r=0}^{\infty} k^r x^r$, stating the value of the real number k and the range of values of x for which the sum is valid.

$$\frac{1}{1-2\times}$$
 is of the form of the infinite sum $\frac{a}{1-r}$, which is

the limit of a geometric sequence with common ratio r and first term a (we have a=1 and r=2x), provided |r|<1. The expansion will be valid provided that $|2x|<1\Rightarrow 2|x|<1$ $\Rightarrow |x|<1/2$. So, if this is the case,

$$\frac{1}{1-2x} = 1 + 2x + (2x)^2 + (2x)^3 + \dots$$

$$\Rightarrow \frac{1}{1-2x} = (2x)^0 + (2x)^1 + (2x)^2 + (2x)^3 + \dots$$

$$\Rightarrow \frac{1}{1-2x} = \sum_{r=0}^{\infty} (2x)^{r}$$

$$\Rightarrow \frac{1}{1-2x} = \sum_{r=0}^{\infty} 2^r x^r$$

$$\left(k = 2, |x| < \frac{1}{2}\right)$$

Write $\frac{1}{5+x}$ in the form $\sum_{r=0}^{\infty} (-1)^r k^{r+1} x^r$, stating the value of the real number k and the range of values of x for which the sum is valid.

$$\frac{1}{5 + x} = \frac{1}{5(1 + (x/5))} = \frac{1}{5} \left(\frac{1}{1 - (-x/5)} \right)$$

$$\frac{1}{1-(-x/5)}$$
 is of the form of the infinite sum $\frac{a}{1-r}$, which

is the limit of a geometric sequence with common ratio r and first term a (we have a=1 and r=-x/5), provided |r|<1. The expansion will be valid provided that |-x/5|<1 $\Rightarrow |x/5|<1 \Rightarrow |1/5| |x|<1 \Rightarrow |x|<5$; then,

$$\frac{1}{5 + x} = (1/5)(1 + (-x/5) + (-x/5)^2 + (-x/5)^3 + \ldots)$$

$$\Rightarrow \frac{1}{5 + x} = (1/5) \sum_{r=0}^{\infty} (-x/5)^{r}$$

$$\Rightarrow \frac{1}{5 + x} = (1/5) \sum_{r=0}^{\infty} (-1)^{r} (1/5)^{r} x^{r}$$

$$\Rightarrow \frac{1}{5 + x} = (1/5) \sum_{r=0}^{\infty} (-1)^{r} (1/5)^{r+1} x^{r}$$

$$\left(k = \frac{1}{5}, |x| < 5\right)$$

AH Maths - MiA (2nd Edn.)

pg. 162-4 Ex. 9.5 Q 1, 2 a - c,
 3 a, 4 a, b,
 7 a - f.

Ex. 9.5

1 Find the sum to infinity of these infinite geometric progressions.

a 2+1+0.5+...

b 100 + 20 + 4 + ...

c 8 + 2 + 0.5 + ...

d 9-3+1-...

e 500 - 100 + 20 - ...

f 147 + 21 + 3 + ...

2 Identify which of these geometric series tend to a limit and find the limit.

a $7+1+\frac{1}{7}+...$

b 1 + 1.5 + 2.25 + ... c 18 + 9 + 4.5 + ...

3 a A geometric series has a sum to infinity of 50.

The common ratio is 0.6.

What is the first term of the series?

4 a Express each of these recurring decimals as an infinite geometric series, and hence as a vulgar fraction in its simplest form.

i 0.282828...

ii 0.345345...

iii 0.041414...

- b By considering a sum to infinity, show that 0.99999... is mathematically equivalent to 1.
- 5 Given that numbers 75 and 18.75 are adjacent terms of an infinite geometric series with a sum to infinity o 6400, find

a the first term

b the partial sum S_5 .

7 Identify for what range of values of x these series have a sum to infinity.

 $a 3 + 3x + 3x^2 + ...$

b $16 + 8x + 4x^2 + ...$

 $c \frac{1}{x} + 4 + 16x + ..., x \neq 0$

d $5 + 20\sqrt{x} + 80x + ...$

 $e \ 2 + \frac{6}{x} + \frac{18}{x^2} + \dots$

 $f 32x^{10} + 8x^8 + 2x^6 + ...$

Answers to AH Maths (MiA), pg. 162-4, Ex. 9.5

d
$$6\frac{3}{4}$$

b 125 c $10\frac{2}{3}$ e $416\frac{2}{3}$ f $171\frac{1}{2}$

2 a
$$8\frac{1}{6}$$

b No limit c 36

4 a i
$$\frac{28}{99}$$
 ii $\frac{115}{333}$ iii $\frac{41}{990}$

ii
$$\frac{115}{333}$$

iii
$$\frac{41}{990}$$

b
$$0.9 + 0.09 + 0.009 + \dots a = 0.9, r = 0.1 \Rightarrow S_{\infty} = 1$$

7 a
$$-1 < x < 1$$

b
$$-2 < x < 2$$

c
$$-\frac{1}{4} < x < \frac{1}{4}$$

b
$$-2 < x < 2$$

d $0 < x < \frac{1}{16}$

e
$$x < -3 \text{ or } x > 3$$

e
$$x < -3 \text{ or } x > 3$$
 f $x < -\frac{1}{2} \text{ or } x > \frac{1}{2}$

- 1) Write $\frac{1}{1-7x}$ in the form $\sum_{r=0}^{\infty} k^r x^r$, stating the value of the real number k and the range of values of x for which the sum is valid.
- 2) Write $\frac{1}{6+x}$ in the form $\sum_{r=0}^{\infty} (-1)^r k^{r+1} x^r$, stating the value of the real number k and the range of values of x for which the sum is valid.
- 3) Write $\frac{4}{9+x}$ in the form $\sum_{r=0}^{\infty} p(-1)^r k^{r+1} x^r$, stating the value of the real numbers p and k and the range of values of x for which the sum is valid.

1)
$$\frac{1}{1-7x} = \sum_{r=0}^{\infty} 7^r x^r$$
 $\left(k = 7, |x| < \frac{1}{7}\right)$

2)
$$\frac{1}{6+x} = \sum_{r=0}^{\infty} (-1)^r (1/6)^{r+1} x^r \quad \left(k = \frac{1}{6}, |x| < 6\right)$$

3)
$$\frac{4}{9+x} = \sum_{r=0}^{\infty} 4(-1)^r 9^{-(r+1)} x^r \quad \left(p = 4, k = 9, |x| < 9\right)$$