2/2/18
 Matrices and Systems of Equations - Lesson 5

Determinants and Inverses of 2×2 Matrices

LI

- Calculate 2×2 Determinants.
- Calculate the Inverse of a 2×2 matrix.
- Solve systems of equations using inverses.

SC

- Primary school arithmetic.

Solving the simultaneous equations,

$$
\begin{aligned}
& a x+b y=e \\
& c x+d y=f
\end{aligned}
$$

gives,

$$
x=\frac{d e-b f}{a d-b c}, \quad y=\frac{a f-c e}{a d-b c}
$$

For solutions to exist, we must therefore have $a d-b c \neq 0$; if not, then no solutions.

The above system of equations can be written as,

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{e}{f}
$$

A matrix A has an inverse (or A is invertible or A is non-singular) if there is a matrix $B\left(=A^{-1}\right)$ satisfying,
$A B=I_{n}=B A$
$\left(A A^{-1}=I_{n}=A^{-1} A\right)$
A, B both square matrices of order $n \times n$

For a 2×2 matrix, the previous table becomes:

The inverse of $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is,
$A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{rr}d & -b \\ -c & a\end{array}\right)$

Example 1

Determine whether or not $A=\left(\begin{array}{rr}3 & -3 \\ -2 & -1\end{array}\right)$ is invertible.

$$
\begin{aligned}
|A| & =(3 \times(-1))-((-3) \times(-2)) \\
\Rightarrow \quad|A| & =-9
\end{aligned}
$$

$$
\text { As }|A| \neq 0, A \text { is invertible }
$$

Example 2

Find the values) of k for which the following system of equations has no solutions.

$$
\begin{aligned}
& 4 x-2 k y=-1 \\
& k x-3 y=0
\end{aligned}
$$

Let $B=\left(\begin{array}{ll}4 & -2 k \\ k & -3\end{array}\right)$. For no solutions, $\operatorname{det} B=0$.

$$
\begin{aligned}
& & \operatorname{det} B & =0 \\
\therefore & & (4 \times(-3))-((-2 k) \times k) & =0 \\
\Rightarrow & & -12+2 k^{2} & =0 \\
\Rightarrow & & k^{2} & =6 \\
\Rightarrow & & k & = \pm \sqrt{6}
\end{aligned}
$$

Example 3

Find Q^{-1} if $Q=\left(\begin{array}{ll}2 & 4 \\ 1 & 3\end{array}\right)$.

$$
\begin{array}{ll}
& \\
\Rightarrow & |Q|=(2 \times 3)-(4 \times 1) \\
\therefore & \\
\therefore & Q^{-1}=\frac{1}{2}\left(\begin{array}{rr}
3 & -4 \\
-1 & 2
\end{array}\right)
\end{array}
$$

Example 4

For what value of k is the matrix,

$$
\left(\begin{array}{cc}
1 & 2 \\
6-k & k
\end{array}\right)
$$

singular?
Denoting the matrix by W , we require,

$$
\begin{aligned}
& & |W| & =0 \\
& \therefore & (1 \times k)-(2 \times(6-k)) & =0 \\
\Rightarrow & & & \\
\Rightarrow & & & =12 \\
& & &
\end{aligned}
$$

Example 5

A non-singular matrix F satisfies $F^{2}=3 F-2 I$, where I is the identity matrix.

Show that $F^{-1}=\frac{3}{2} I-\frac{1}{2} F$.

$$
\begin{array}{rlrl}
& & F^{2} & =3 F-2 I \\
& \therefore & F^{-1} F^{2} & =F^{-1}(3 F-2 I) \\
\Rightarrow & & F & =3 F^{-1} F-2 F^{-1} I \\
\Rightarrow & F & =3 I-2 F^{-1} \\
\Rightarrow & & 2 F^{-1}=3 I-F \\
& & & F^{-1}=\frac{3}{2} I-\frac{1}{2} F
\end{array}
$$

Example 6

Use matrix multiplication to solve,

$$
\begin{aligned}
2 x+3 y & =1 \\
x-y & =3 \\
\left(\begin{array}{rr}
2 & 3 \\
1 & -1
\end{array}\right)\binom{x}{y} & =\binom{1}{3} \quad 2
\end{aligned}
$$

Letting $A=\left(\begin{array}{rr}2 & 3 \\ 1 & -1\end{array}\right)$, we have $|A|=-5$ and hence,

$$
A^{-1}=-\frac{1}{5}\left(\begin{array}{rr}
-1 & -3 \\
-1 & 2
\end{array}\right)
$$

Pre-multiplying $\underset{\sim}{r}$ by A^{-1} gives,

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{x}{y}=-\frac{1}{5}\left(\begin{array}{rr}
-1 & -3 \\
-1 & 2
\end{array}\right)\binom{1}{3} \\
\Rightarrow & \binom{x}{y}=-\frac{1}{5}\binom{10}{5} \\
\Rightarrow & \binom{x}{y}=\binom{2}{-1} \\
& x=2, y=-1
\end{aligned}
$$

AH Maths - MiA (2 ${ }^{\text {nd }}$ Edn.)

- pg. 240-1 Ex. 13.6 All Q.
- pg. 243-4 Ex. 13.7

Q 1, $3 a-e, 5,6 a, 7-10,11 a$.

Ex. 13.6

1 Calculate the determinant of each matrix.
$a\left(\begin{array}{rr}3 & 1 \\ -2 & 4\end{array}\right)$
b $\left(\begin{array}{rr}12 & 3 \\ 8 & 2\end{array}\right)$
c $\left(\begin{array}{rr}5 & -2 \\ -3 & -1\end{array}\right)$
d $\left(\begin{array}{ll}1 & 0 \\ 3 & 7\end{array}\right)$
e $\left(\begin{array}{rr}-4 & -5 \\ 2 & -1\end{array}\right)$
f $\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$
$g\left(\begin{array}{rr}7 & 1 \\ -2 & -1\end{array}\right)$
$\mathrm{h}\left(\begin{array}{rr}\sin x & -\cos x \\ \cos x & \sin x\end{array}\right)$

2 Find x in each case.
a $\left|\begin{array}{ll}2 & 1 \\ 1 & x\end{array}\right|=7$
b $\left|\begin{array}{rr}3 & -1 \\ 2 x & 4\end{array}\right|=26$
c $\left|\begin{array}{cc}3 x & 1 \\ 1 & x\end{array}\right|=47$
d $\left|\begin{array}{rr}2 x & x \\ -3 & x\end{array}\right|=2$
e $\left|\begin{array}{ll}x & x \\ 3 & x\end{array}\right|=10$
f $\left|\begin{array}{cr}\sin x^{\circ} & -1 \\ 1 & 1\end{array}\right|=0,0 \leq x \leq 360$
$\mathrm{g}\left|\begin{array}{ll}e^{x} & e \\ 1 & e^{x}\end{array}\right|=0$

3 For each of these systems of equations
i express the system of equations as a matrix equation of the form $A X=B$ where $X=\binom{x}{y}$
ii by considering $\operatorname{det}(A)$, determine whether the system has a solution.
a $x+y=1$
b $4 x+y=2$ $3 x+2 y=4$
$8 x+2 y=3$
c $5 x-2 y=2$
d $5 x-y=1$
$10 x-4 y=1$
$3 x-2 y=0$

4 Study each system of equations and say for what value(s) of k the system has no solution.
a $3 x+k y=3$
b $5 x-2 k y=4$
$x+2 y=1$
$3 x+6 y=-2$
c $6 x-2 k y=-1$
$k x-12 y=0$
d $k x+(k-4) y=5$
er $2 x+k y=3$

Ex. 13.7

1 Find A^{-1}, the inverse of the matrix $A=\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right)$, and verify that $A^{-1} A=I=A A^{-1}$.

3 Find the inverse, where it exists, of each of these matrices.
a $\left(\begin{array}{ll}2 & 4 \\ 3 & 6\end{array}\right)$
b $\left(\begin{array}{ll}5 & 4 \\ 4 & 3\end{array}\right)$
c $\left(\begin{array}{ll}9 & 6 \\ 3 & 2\end{array}\right)$
d $\left(\begin{array}{rr}4 & -2 \\ -7 & 3\end{array}\right)$
e $\left(\begin{array}{rr}9 & 2 \\ 13 & 3\end{array}\right)$

5 Given that $A=\left(\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right)$ and $B=\left(\begin{array}{ll}7 & 2 \\ 4 & 1\end{array}\right)$, show that
a $A^{-1} B^{-1}=(B A)^{-1}$
b $(A B)^{-1}=B^{-1} A^{-1}$
c $|A||B|=|A B|$

6 a Given that A and B are square matrices, simplify
i $A^{-1} B^{-1} B A$
ii $B A A^{-1} B^{-1}$
iii $B^{-1} A^{-1} A B$
iv $A B B^{-1} A^{-1}$

7 Find the inverse of
a $\left(\begin{array}{rr}a & -a \\ -a & 2 a\end{array}\right)$
b $\left(\begin{array}{ll}3 x & 5 x \\ 2 x & 4 x\end{array}\right)$
c $\left(\begin{array}{ll}3 t & t^{3} \\ 2 & t^{2}\end{array}\right)$
d $\left(\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$
e $\left(\begin{array}{cc}1-x & x \\ -x & 1+x\end{array}\right)$
f $\left(\begin{array}{cc}a & a+1 \\ a-1 & a\end{array}\right)$

8 For what values of k are these matrices singular?
a $\left(\begin{array}{ll}2 & 2 \\ 4 & k\end{array}\right)$
b $\left(\begin{array}{cc}1 & 2 k \\ 3 & 6\end{array}\right)$
c $\left(\begin{array}{cc}1-k & -1 \\ 3 & 1+k\end{array}\right)$
d $\left(\begin{array}{cc}2+k & -6 \\ 4 & 3-k\end{array}\right)$

9 Show that these matrices are their own inverse (that is, $A^{-1}=A$).
a $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
b $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
c $\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$
d $\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right)$
e $\left(\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right)$
f $\left(\begin{array}{rr}\sin \theta & \cos \theta \\ \cos \theta & -\sin \theta\end{array}\right)$
g $\left(\begin{array}{rr}\frac{4}{5} & \frac{3}{5} \\ \frac{3}{5} & -\frac{4}{5}\end{array}\right)$
$10 \quad A=\left(\begin{array}{rr}2 & 3 \\ 7 & 11\end{array}\right)$
a Show that $A^{2}=13 A-I$.
b Hence show (without evaluating A^{3} or A^{-1}) that
i $A^{3}=168 A-13 I$
ii $A^{-1}=13 I-A$

11 For each of these systems of equations
i express the system of equations in the form $A X=B$
ii find the inverse of the matrix A
iii hence solve the system for x and y.

$$
\text { a } \begin{aligned}
& 2 x+y=9 \\
& 3 x+2 y=16
\end{aligned}
$$

Answers to AH Maths (MiA), pg. 240-1, Ex. 13.6

$$
\begin{array}{llllllll}
4 & \mathrm{a} & 6 & \mathrm{~b} & -5 & \mathrm{c} & \pm 6 & \mathrm{~d}
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{llllllll}
1 & \text { a } & 14 & b & 0 & \text { c } & -11 & \text { d }
\end{array} \\
& \begin{array}{llllllll}
\text { e } & 14 & \text { f } & -1 & \text { g } & -5 & \text { h } & 1
\end{array} \\
& \begin{array}{lllllllll}
2 & \text { a } & 4 & b & 7 & c & \pm 4 & \text { d } & -2,0.5
\end{array} \\
& \text { e }-2,5 \text { f } 270 \text { g } \frac{1}{2} \\
& 3 \text { a i }\left(\begin{array}{ll}
1 & 1 \\
3 & 2
\end{array}\right)\binom{x}{y}=\binom{1}{4} \quad \text { ii }|A|=-1 \Rightarrow \exists \text { a solution } \\
& \text { b i }\left(\begin{array}{ll}
4 & 1 \\
8 & 2
\end{array}\right)\binom{x}{y}=\binom{2}{3} \quad \text { ii No solution } \\
& \text { c } \quad \text { i }\left(\begin{array}{rr}
5 & -2 \\
10 & -4
\end{array}\right)\binom{x}{y}=\binom{2}{1} \quad \text { ii No solution } \\
& \text { d i }\left(\begin{array}{ll}
5 & -1 \\
3 & -2
\end{array}\right)\binom{x}{y}=\binom{1}{0} \quad \text { ii }|A|=-7 \Rightarrow \exists \text { a solution }
\end{aligned}
$$

Answers to AH Maths (MiA), pg. 243-4, Ex. 13.7
$1\left(\begin{array}{rr}2 & -1 \\ -3 & 2\end{array}\right)$
3 a No inverse b $\left(\begin{array}{rr}-3 & 4 \\ 4 & -5\end{array}\right) \quad$ c \quad No inverse
d $\quad-\frac{1}{2}\left(\begin{array}{ll}3 & 2 \\ 7 & 4\end{array}\right)$ e $\left(\begin{array}{rr}3 & -2 \\ -13 & 9\end{array}\right)$
5 a Proof b Proof c Proof
6 a i ii iii iv I
7 a $\frac{1}{a}\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$
b $\frac{1}{2 x}\left(\begin{array}{rr}4 & -5 \\ -2 & 3\end{array}\right)$
c $\frac{1}{t^{3}}\left(\begin{array}{rr}t^{2} & -t^{3} \\ -2 & 3 t\end{array}\right)$
d $\left(\begin{array}{r}\cos \theta \\ -\sin \theta \\ -\sin \theta \\ \cos \theta\end{array}\right)$
e $\quad\left(\begin{array}{cc}1+x & -x \\ x & 1-x\end{array}\right) \quad$ f $\quad\left(\begin{array}{cc}a & -1-a \\ 1-a & a\end{array}\right)$
$\begin{array}{lllllllll}8 & \text { a } & 4 & \text { b } & 1 & \text { c } & \pm 2 & \text { d } & -5,6\end{array}$
9 a-g Proofs
10 a Proof bi ii Proofs
11 a i $\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right)\binom{x}{y}=\binom{9}{6} \quad$ ii $\left(\begin{array}{rr}2 & -1 \\ -3 & 2\end{array}\right)$
iii $(x, y)=(2,5)$

