Differential Calculus - Lesson 5

Derivatives of Sin x and Cos x

<u>LI</u>

- Know the derivatives of sin x and cos x.
- Use these derivatives to solve problems involving tangents.

<u>SC</u>

- Differentiation rules for $sin \times and cos \times$.
- Exact values of sin x and cos x for $x = 0, \pi/6, \pi/4, \pi/3$ and $\pi/2$.
- Graphs of $sin \times and cos \times in radians$.

$$\frac{d}{dx} \sin x = \cos x$$
$$\frac{d}{dx} \cos x = -\sin x$$
These equations are only true when x is in RADIANS

If x is in degrees, the equations are more complicated; that's why we use radians when doing calculus with trigonometric functions

Differentiate $y = 5 \cos x$ with respect to x.

$$y = 5 \cos x$$

$$\therefore \qquad y' = -5 \sin x$$

· .

Find the derivative of $y = \frac{3 \sin x - 4 \cos x}{7}$. $y = \frac{3 \sin x - 4 \cos x}{7}$ $y = \frac{3}{7} \sin x - \frac{4}{7} \cos x$

$$y' = \frac{3}{7} \cos x + \frac{4}{7} \sin x$$

Find the gradient of the tangent to the curve

$$y = 2 \cos x \text{ at } x = \frac{\pi}{4}.$$

$$y(x) = 2 \cos x$$

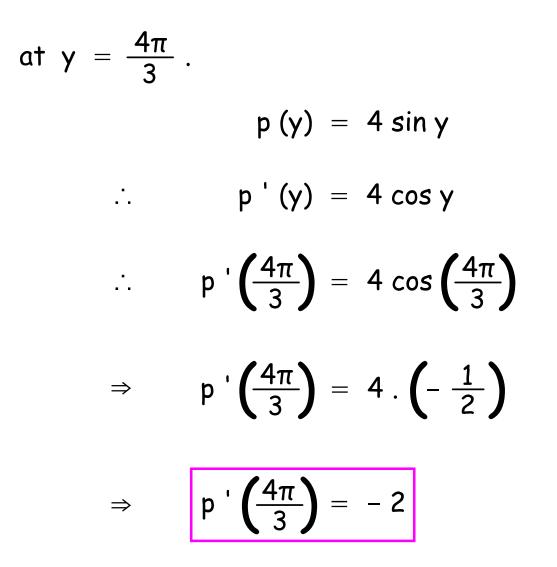
$$\therefore \quad y'(x) = -2 \sin x$$

$$\therefore \quad y'\left(\frac{\pi}{4}\right) = -2 \sin\left(\frac{\pi}{4}\right)$$

$$\Rightarrow \quad y'\left(\frac{\pi}{4}\right) = -2\left(\frac{1}{\sqrt{2}}\right)$$

$$\Rightarrow \quad y'\left(\frac{\pi}{4}\right) = -2\left(\frac{1}{\sqrt{2}}\right)$$

Find the rate of change of $p(y) = 4 \sin y$ at



Find the gradient of the tangent to the curve with equation $y = 3 \cos x - 4 x$ when x = 2.

Give your answer correct to 2 s.f..

$$y(x) = 3 \cos x - 4 x$$

$$\therefore \quad y'(x) = -3 \sin x - 4$$

$$\therefore \quad y'(2) = -3 \sin 2 - 4$$

$$\Rightarrow \quad y'(2) = -3 (0.909...) - 4$$

$$\Rightarrow \quad y'(2) = -6.73 (to 2 s.f.)$$

A curve has equation $y = 2 \sin x$ ($0 \le x \le \pi$).

Find the x - coordinates of the points where the

gradient of the curve is $-\sqrt{3}$.

 $y(x) = 2 \sin x$

$$\therefore y'(x) = 2 \cos x$$

 $y'(x) = -\sqrt{3}$ implies,

$$2\cos x = -\sqrt{3}$$

$$\Rightarrow \qquad \cos x = -\frac{\sqrt{3}}{2}$$

$$\therefore \qquad \mathsf{RAA} = \frac{\pi}{6}$$

$$\Rightarrow \qquad x = \frac{5\pi}{6} , \frac{7\pi}{6}$$

But the range of x - values is $0 \le x \le \pi$. So,

$$x = \frac{5\pi}{6}$$

Find the equation of the tangent to $y = 6 \sin x$

at $x = \frac{\pi}{6}$	
	$y(x) = 6 \sin x$
	$y'(x) = 6 \cos x$
	$\gamma'\left(\frac{\pi}{6}\right) = 6\cos\left(\frac{\pi}{6}\right)$
⇒	$\gamma'\left(\frac{\pi}{6}\right) = 6 \cdot \frac{\sqrt{3}}{2}$
⇒	$\gamma'\left(\frac{\pi}{6}\right) = 3\sqrt{3}$
	$y(x) = 6 \sin x$
	$\gamma\left(\frac{\pi}{6}\right) = 6 \sin\left(\frac{\pi}{6}\right)$
⇒	$\gamma\left(\frac{\pi}{6}\right) = 6 \cdot \frac{1}{2}$
⇒	$\gamma\left(\frac{\pi}{6}\right) = 3$
	y - b = m(x - a) (a, b) $\frac{\pi}{6} 3$
÷	$y - 3 = 3\sqrt{3} \left(x - \frac{\pi}{6}\right)$
⇒	$y - 3 = 3\sqrt{3} x - \frac{\pi\sqrt{3}}{2}$
⇒	$2 y - 6 = 6 \sqrt{3} x - \pi \sqrt{3}$
⇒	$2y = 6\sqrt{3}x - \pi\sqrt{3} + 6$

CfE Higher Maths

- pg. 227 228 Ex. 9E Q 1 7
- pg. 241 Ex. 10A Q 2 a, c, 4 a, c

1

Questions

a $8 \sin x$ d $\frac{1}{2} \sin x$ g $6x^2 + 7 \sin x$ j $\sin x - \cos x$ m $-5\cos x + \frac{3}{4x}$ p $\frac{4-x^2}{x^3} - \frac{1}{5}\cos x$ s $\frac{\sin x - 3\cos x}{5}$

Differentiate:

b
$$3\cos x$$

e $\frac{2}{3}\cos x$
h $3\sin x + 7\cos x$
k $\frac{3}{x^2} - \cos x$
n $5x^3 - \frac{1}{\sqrt[3]{x^5}} + 9\sin x$
q $\frac{6}{\sqrt{x}} - 4\sin x$

c
$$-\sin x$$

f $-\frac{5}{8}\cos x$
i $\cos x + 6\sin x$
l $\frac{4}{5}\sin x - 6\sqrt{x}$
o $\frac{1 - 9x^2\cos x}{3x^2}$
r $-\frac{5}{6}\cos x - \frac{5 - \sqrt{x}}{x^2}$

- **2** a Given $f(x) = 6 \sin x$, find the value of $f'(\frac{\pi}{3})$.
 - **b** $y = 2\cos x$ Find $\frac{dy}{dx}$ when $x = \frac{\pi}{6}$.
 - **c** Find the gradient of the tangent to the curve with equation $y = \frac{1}{2} \sin x$ at the point where $x = \frac{\pi}{4}$.
 - **d** On a suitable domain, the function *f* is defined by $f(x) = -4\cos x$. Find the rate of change of *f* when $x = \frac{\pi}{3}$.
- **3** a A curve has equation $y = 4\sin x$. Find the gradient of the curve at the point where $x = \frac{5\pi}{3}$.
 - **b** On a suitable domain, the function g is defined by $g(x) = 5 \cos x$. Find $g'\left(\frac{7\pi}{6}\right)$.
 - **c** Find the gradient of the tangent to the curve $y = \frac{3}{4}\sin x$ at the point where $x = \frac{2\pi}{3}$.
 - **d** $y = -6 \sin x$ Find $\frac{dy}{dx}$ when $x = \frac{5\pi}{4}$.
- 4 A function is defined by $y = 4 \sin x \cos x$. Find $\frac{dy}{dx}$ when $x = \frac{3\pi}{2}$.

- 5 You may use a calculator in this question. Give your answers to 2 decimal places.
 - **a** Find the gradient of the tangent to the curve with equation $y = 3 \sin x 4$ when x = 2.
 - **b** On a suitable domain, the function *f* is defined by $f(x) = -4\cos x + 1$. Evaluate f'(4).
 - **c** Find the gradient of the curve with equation $y = 7 \sin x 5 \cos x$ at the point where x = 2.2.
 - **d** On a suitable domain the function g is defined by $4x \frac{1}{2}\sin x$. Find the rate of change of g when x = -1.6.
- 6 The function *f* is defined by $f(x) = 6 \sin x$ where $0 \le x < 2\pi$. Find the values of *x* for which the rate of change of *f* is equal to 3.
- 7 A curve has equation $y = 8\cos x$. Find the values of $x, 0 \le x < 2\pi$, for which $\frac{dy}{dx} = -4$

Answers

1	a	8 cos <i>x</i>	2	a	3	6	$x = \frac{\pi}{3}$
	b	$-3\sin x$		b	-1		$x = \frac{5\pi}{3}$
	С	$-\cos x$		С	$\frac{1}{2\sqrt{2}}$	7	$x = \frac{\pi}{6}$
	d	$\frac{1}{2}\cos x$		d	$2\sqrt{3}$	1	0
		$-\frac{2}{3}\sin x$	3	a	2		$x = \frac{5\pi}{6}$
		$\frac{5}{8}$ sinx		b	<u>5</u>		
	-	$12x + 7\cos x$			$-\frac{3}{9}$		
		$3\cos x - 7\sin x$			$3\sqrt{2}$		
		$6\cos x - \sin x$	4	-1			
	· ·	$\cos x + \sin x$			-1.25		
		$\sin x - \frac{6}{x^3}$			-3.03		
	I	$\frac{4\cos x}{5} - \frac{3}{\sqrt{x}}$			-0.08		
	m	$5\sin x - \frac{3}{4x^2}$			4.01		
	n	$9\cos x + 15x^2 + \frac{5}{3x^{\frac{8}{3}}}$		u			
	0	$3\sin x - \frac{2}{3x^3}$					
	р	$-\frac{12}{x^4} + \frac{1}{x^2} + \frac{1}{5}\sin x$					
	q	$-4\cos x - \frac{3}{x^{\frac{3}{2}}}$					
	r	$\frac{5}{6}\sin x + \frac{10}{x^3} - \frac{3}{2x^{\frac{5}{2}}}$					
	s	$\frac{1}{5}(\cos x + 3\sin x)$					

Questions

2 For each of these functions, find the equation of the tangent at the given point.

a
$$y = \cos x; \left(\frac{\pi}{6}, \frac{\sqrt{3}}{2}\right)$$
 c $y = 4\sin x; \left(\frac{\pi}{4}, 2\sqrt{2}\right)$

4 For each of these functions, find the equation of the tangent at the given point.

a
$$y = \cos x; \ x = \frac{\pi}{3}$$
 c $y = 8\cos x; \ x = \frac{2\pi}{3}$

Answers

2	а	$y = -\frac{1}{2}x + \frac{1}{12}\left(\pi + 6\sqrt{3}\right)$
	С	$y = 2\sqrt{2}x + 2\sqrt{2}\left(1 - \frac{\pi}{4}\right)$
4	а	$y = -\frac{\sqrt{3}}{2}x + \frac{1}{6}(3 + \sqrt{3}\pi)$
	С	$y = -4\sqrt{3}x + \frac{4}{3}(2\sqrt{3}\pi - 3)$