Differential Calculus - Lesson 5

Derivatives of $\operatorname{Sin} x$ and $\operatorname{Cos} x$

LI

- Know the derivatives of $\sin x$ and $\cos x$.
- Use these derivatives to solve problems involving tangents.

SC

- Differentiation rules for $\sin x$ and $\cos x$.
- Exact values of $\sin x$ and $\cos x$ for $x=0, \pi / 6, \pi / 4, \pi / 3$ and $\pi / 2$.
- Graphs of $\sin x$ and $\cos x$ in radians.
$\frac{d}{d x} \sin x=\cos x$
$\frac{d}{d x} \cos x=-\sin x$

These equations are only true when x is in RADIANS

If x is in degrees, the equations are more complicated; that's why we use radians when doing calculus with trigonometric functions

Example 1

Differentiate $y=5 \cos x$ with respect to x.

$$
y=5 \cos x
$$

$\therefore y^{\prime}=-5 \sin x$

Example 2
Find the derivative of $y=\frac{3 \sin x-4 \cos x}{7}$.

$$
\begin{aligned}
y & =\frac{3 \sin x-4 \cos x}{7} \\
y & =\frac{3}{7} \sin x-\frac{4}{7} \cos x \\
\therefore \quad y^{\prime} & =\frac{3}{7} \cos x+\frac{4}{7} \sin x
\end{aligned}
$$

Example 3

Find the gradient of the tangent to the curve

$$
y=2 \cos x \text { at } x=\frac{\pi}{4} .
$$

$$
\begin{aligned}
& & y(x) & =2 \cos x \\
& \therefore & y^{\prime}(x) & =-2 \sin x \\
& \therefore & y^{\prime}\left(\frac{\pi}{4}\right) & =-2 \sin \left(\frac{\pi}{4}\right) \\
& \Rightarrow & y^{\prime}\left(\frac{\pi}{4}\right) & =-2\left(\frac{1}{\sqrt{2}}\right) \\
& \Rightarrow & y^{\prime}\left(\frac{\pi}{4}\right) & =-\sqrt{2}
\end{aligned}
$$

Example 4

Find the rate of change of $p(y)=4 \sin y$ at

$$
\text { at } y=\frac{4 \pi}{3} \text {. }
$$

$$
\begin{array}{rlrl}
& & p^{\prime}(y)=4 \sin y \\
\therefore & p^{\prime}(y)=4 \cos y \\
\therefore & p^{\prime}\left(\frac{4 \pi}{3}\right)=4 \cos \left(\frac{4 \pi}{3}\right) \\
\Rightarrow & p^{\prime}\left(\frac{4 \pi}{3}\right)=4 \cdot\left(-\frac{1}{2}\right) \\
\Rightarrow & p^{\prime}\left(\frac{4 \pi}{3}\right)=-2
\end{array}
$$

Example 5

Find the gradient of the tangent to the curve with equation $y=3 \cos x-4 x$ when $x=2$.

Give your answer correct to 2 s.f. .

$$
\begin{array}{rlrl}
& & y(x)=3 \cos x-4 x \\
\therefore & y^{\prime}(x)=-3 \sin x-4 \\
\therefore & y^{\prime}(2)=-3 \sin 2-4 \\
\Rightarrow & y^{\prime}(2)=-3(0.909 \ldots)-4 \\
\Rightarrow & y^{\prime}(2)=-6.73 \text { (to 2 s.f.) }
\end{array}
$$

Example 6
A curve has equation $y=2 \sin x(0 \leq x \leq \pi)$.
Find the x-coordinates of the points where the gradient of the curve is $-\sqrt{3}$.

$$
\begin{aligned}
& y(x)=2 \sin x \\
& \therefore \quad \frac{y^{\prime}(x)=2 \cos x}{y^{\prime}(x)=} \\
& 2 \cos x=-\sqrt{3} \text { implies, } \\
& \Rightarrow \quad \cos x=-\frac{\sqrt{3}}{2} \\
& \therefore \quad \text { RAA }=\frac{\pi}{6} \\
& \Rightarrow \quad x=\frac{5 \pi}{6}, \frac{7 \pi}{6}
\end{aligned}
$$

But the range of x-values is $0 \leq x \leq \pi$. So,

$$
x=\frac{5 \pi}{6}
$$

Example 7

Find the equation of the tangent to $y=6 \sin x$ at $x=\frac{\pi}{6}$.

$$
\begin{aligned}
& y(x)=6 \sin x \\
& \therefore \quad y^{\prime}(x)=6 \cos x \\
& \therefore \quad y^{\prime}\left(\frac{\pi}{6}\right)=6 \cos \left(\frac{\pi}{6}\right) \\
& \Rightarrow \quad y^{\prime}\left(\frac{\pi}{6}\right)=6 \cdot \frac{\sqrt{3}}{2} \\
& \Rightarrow \quad y^{\prime}\left(\frac{\pi}{6}\right)=3 \sqrt{3} \\
& y(x)=6 \sin x \\
& \therefore \quad y\left(\frac{\pi}{6}\right)=6 \sin \left(\frac{\pi}{6}\right) \\
& \Rightarrow \quad y\left(\frac{\pi}{6}\right)=6 \cdot \frac{1}{2} \\
& \Rightarrow \quad y\left(\frac{\pi}{6}\right)=3 \\
& y-b=m(x-a) \\
& \begin{array}{c}
m=3 \sqrt{3} \\
(a, b) \\
\frac{\pi}{6} 3
\end{array} \\
& \therefore \quad y-3=3 \sqrt{3}\left(x-\frac{\pi}{6}\right) \\
& \Rightarrow \quad y-3=3 \sqrt{3} x-\frac{\pi \sqrt{3}}{2} \\
& \Rightarrow \quad 2 y-6=6 \sqrt{3} x-\pi \sqrt{3} \\
& \Rightarrow \quad 2 y=6 \sqrt{3} x-\pi \sqrt{3}+6
\end{aligned}
$$

CfE Higher Maths

- pg.227-228 Ex.9E Q1-7
- pg. 241 Ex. 10 A Q $2 a, c, 4 a, c$

Questions

1 Differentiate:
a $8 \sin x$
d $\frac{1}{2} \sin x$
b $3 \cos x$
c $-\sin x$
e $\frac{2}{3} \cos x$
f $-\frac{5}{8} \cos x$
g $6 x^{2}+7 \sin x$
h $3 \sin x+7 \cos x$
j $\sin x-\cos x$
k $\frac{3}{x^{2}}-\cos x$
i $\cos x+6 \sin x$
I $\frac{4}{5} \sin x-6 \sqrt{x}$
m $-5 \cos x+\frac{3}{4 x}$
n $5 x^{3}-\frac{1}{\sqrt[3]{x^{5}}}+9 \sin x$
o $\frac{1-9 x^{2} \cos x}{3 x^{2}}$
p $\frac{4-x^{2}}{x^{3}}-\frac{1}{5} \cos x$
q $\frac{6}{\sqrt{x}}-4 \sin x$
r $-\frac{5}{6} \cos x-\frac{5-\sqrt{x}}{x^{2}}$
s $\frac{\sin x-3 \cos x}{5}$

2 a Given $f(x)=6 \sin x$, find the value of $f^{\prime}\left(\frac{\pi}{3}\right)$.
b $\quad y=2 \cos x$ Find $\frac{d y}{d x}$ when $x=\frac{\pi}{6}$.
c Find the gradient of the tangent to the curve with equation $y=\frac{1}{2} \sin x$ at the point where $x=\frac{\pi}{4}$.
d On a suitable domain, the function f is defined by $f(x)=-4 \cos x$. Find the rate of change of f when $x=\frac{\pi}{3}$.
3 a A curve has equation $y=4 \sin x$. Find the gradient of the curve at the point where $x=\frac{5 \pi}{3}$.
b On a suitable domain, the function g is defined by $g(x)=5 \cos x$. Find $g^{\prime}\left(\frac{7 \pi}{6}\right)$.
c Find the gradient of the tangent to the curve $y=\frac{3}{4} \sin x$ at the point where $x=\frac{2 \pi}{3}$.
d $y=-6 \sin x$ Find $\frac{d y}{d x}$ when $x=\frac{5 \pi}{4}$.
4 A function is defined by $y=4 \sin x-\cos x$. Find $\frac{d y}{d x}$ when $x=\frac{3 \pi}{2}$.

5 You may use a calculator in this question. Give your answers to 2 decimal places.
a Find the gradient of the tangent to the curve with equation $y=3 \sin x-4$ when $x=2$.
b On a suitable domain, the function f is defined by $f(x)=-4 \cos x+1$. Evaluate $f^{\prime}(4)$.
c Find the gradient of the curve with equation $y=7 \sin x-5 \cos x$ at the point where $x=2.2$.
d On a suitable domain the function g is defined by $4 x-\frac{1}{2} \sin x$. Find the rate of change of g when $x=-1.6$.
6 The function f is defined by $f(x)=6 \sin x$ where $0 \leq x<2 \pi$. Find the values of x for which the rate of change of f is equal to 3 .

7 A curve has equation $y=8 \cos x$. Find the values of $x, 0 \leq x<2 \pi$, for which $\frac{d y}{d x}=-4$

Answers

1 a $8 \cos x$
b $-3 \sin x$
c $-\cos x$
d $\frac{1}{2} \cos x$
e $-\frac{2}{3} \sin x$
f $\frac{5}{8} \sin x$
g $12 x+7 \cos x$
h $3 \cos x-7 \sin x$
i $6 \cos x-\sin x$
j $\cos x+\sin x$
k $\sin x-\frac{6}{x^{3}}$
l $\frac{4 \cos x}{5}-\frac{3}{\sqrt{x}}$
m $5 \sin x-\frac{3}{4 x^{2}}$
n $9 \cos x+15 x^{2}+\frac{5}{3 x^{\frac{8}{3}}}$
o $3 \sin x-\frac{2}{3 x^{3}}$
p $-\frac{12}{x^{4}}+\frac{1}{x^{2}}+\frac{1}{5} \sin x$
q $-4 \cos x-\frac{3}{x^{\frac{3}{2}}}$
r $\frac{5}{6} \sin x+\frac{10}{x^{3}}-\frac{3}{2 x^{\frac{5}{2}}}$
s $\frac{1}{5}(\cos x+3 \sin x)$

2 a 3
b -1
c $\frac{1}{2 \sqrt{2}}$
d $2 \sqrt{3}$
3 a 2
b $\quad \frac{5}{2}$
c $-\frac{3}{8}$
d $3 \sqrt{2}$
4 -1
5 a -1.25
b $\quad-3.03$
c -0.08
d 4.01
$6 \quad x=\frac{\pi}{3}$
$x=\frac{5 \pi}{3}$
$7 x=\frac{\pi}{6}$
$x=\frac{5 \pi}{6}$

Questions

2 For each of these functions, find the equation of the tangent at the given point.

$$
\text { a } y=\cos x ;\left(\frac{\pi}{6}, \frac{\sqrt{3}}{2}\right) \quad \text { c } y=4 \sin x ;\left(\frac{\pi}{4}, 2 \sqrt{2}\right)
$$

4 For each of these functions, find the equation of the tangent at the given point.
a $y=\cos x ; x=\frac{\pi}{3}$
c $y=8 \cos x ; x=\frac{2 \pi}{3}$

Answers

2 a $y=-\frac{1}{2} x+\frac{1}{12}(\pi+6 \sqrt{3})$

$$
\text { c } \quad y=2 \sqrt{2} x+2 \sqrt{2}\left(1-\frac{\pi}{4}\right)
$$

$4 \quad$ a $\quad y=-\frac{\sqrt{3}}{2} x+\frac{1}{6}(3+\sqrt{3} \pi)$

$$
\text { c } \quad y=-4 \sqrt{3} x+\frac{4}{3}(2 \sqrt{3} \pi-3)
$$

