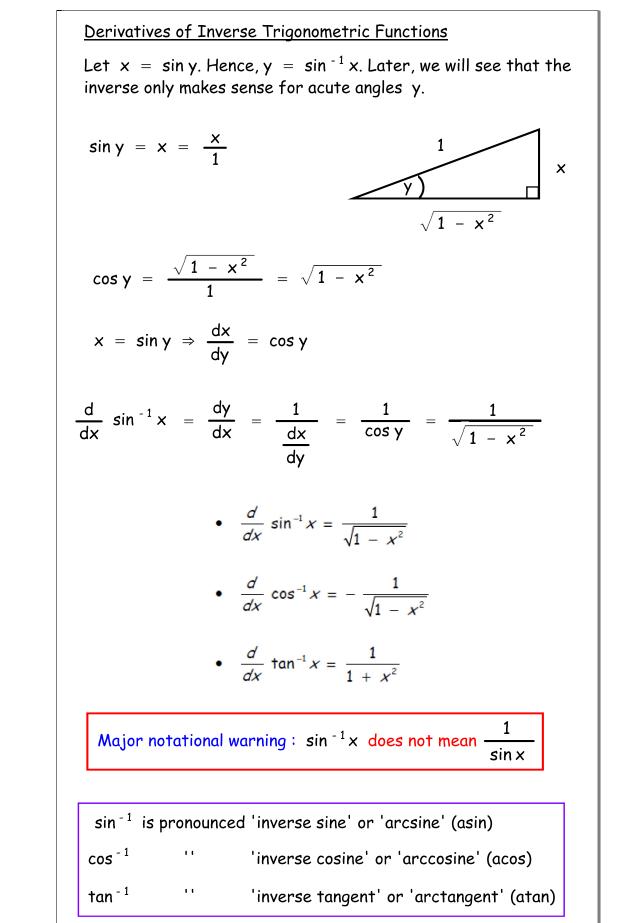


Example 1 Find the derivative of the inverse of the function $f(x) = x^{3}$. $f(x) = x^{3}$ $\int f'(x) = 3x^{2}$ $f^{-1}(x) = x^{1/3}$ $\frac{d}{dx} f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$ $\therefore \quad \frac{d}{dx} f^{-1}(x) = \frac{1}{f'(x^{1/3})}$ $\frac{d}{dx} f^{-1}(x) = \frac{1}{3(x^{1/3})^2}$ $\frac{d}{dx} f^{-1}(x) = \frac{1}{3 x^{2/3}}$ \Rightarrow

005 - Derivatives of Inverse (Trigonometric) Functions.notebook

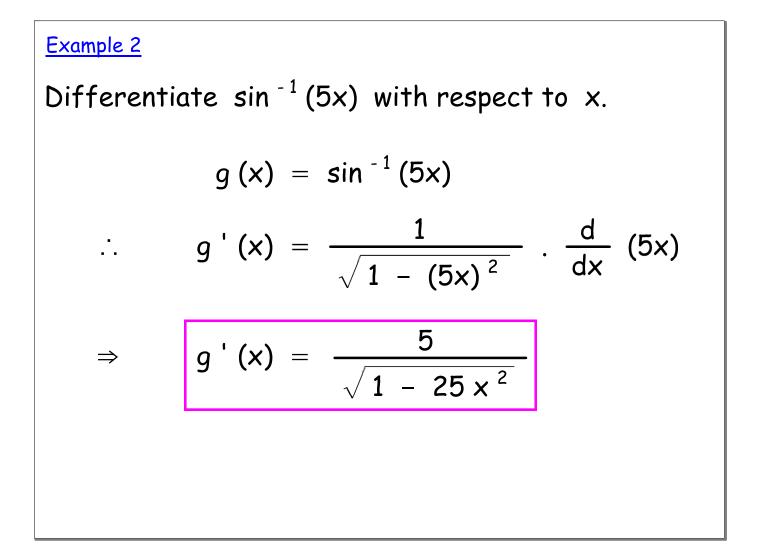


General Form of Derivatives - Chain Rule

$$\frac{d}{dx} \sin^{-1} f(x) = \frac{f'(x)}{\sqrt{1 - (f(x))^2}}$$

$$\frac{d}{dx} \cos^{-1} f(x) = -\frac{f'(x)}{\sqrt{1 - (f(x))^2}}$$

$$\frac{d}{dx} \tan^{-1} f(x) = \frac{f'(x)}{1 + (f(x))^2}$$



Example 3
If
$$f(x) = \tan^{-1} (e^{4x})$$
, find the exact value
of $f'(1/2)$.
 $f(x) = \tan^{-1} (e^{4x})$
 $\therefore \quad f'(x) = \frac{1}{1 + (e^{4x})^2} \cdot \frac{d}{dx} (e^{4x})$
 $\Rightarrow \quad f'(x) = \frac{4e^{4x}}{1 + e^{8x}}$
 $\therefore \quad f'(1/2) = \frac{4e^{4(1/2)}}{1 + e^{8(1/2)}}$
 $\Rightarrow \quad f'(1/2) = \frac{4e^2}{1 + e^4}$

Example 4

Find the gradient of the tangent line to the curve defined by $y = x \cos^{-1} x$ at x = 0.

$$y(x) = x \cos^{-1} x$$

This is a product of functions of x, so the Product Rule must be used.

$$\therefore \qquad y'(x) = (1) \cos^{-1} x + x \cdot \frac{-1}{\sqrt{1 - x^2}}$$

$$\Rightarrow \qquad y'(x) = \cos^{-1} x - \frac{x}{\sqrt{1 - x^2}}$$

$$\therefore \qquad y'(0) = \cos^{-1}(0) - \frac{0}{\sqrt{1 - 0^2}}$$

$$\Rightarrow \qquad y'(0) = \pi/2 - 0$$

$$\Rightarrow \qquad y'(0) = \pi/2$$

- pg. 84 Ex. 6.1 Q 1 a, b, d.
- pg. 85 Ex. 6.2 Q 1 a, b, d, f,
 2 a, b, d, e, 3 a, c, d, 4 6, 8.
- pg. 86-7 Ex. 6.3 Q 1 7, 9 a.

Ex. 6.1 **1** For each function f(x), find the derivative of the inverse function $f^{-1}(x)$. • a $f(x) = x^5$ • b $f(x) = x^{\frac{3}{4}}$ c $f(x) = 2x^{-2}, x > 0$ • d $f(x) = x^2 + 1, x > 1$ Ex. 6.2 **1** Find the derivative of • a $\sin^{-1}x^2$ • b $\tan^{-1}(x+2)$ c $\sin^{-1}\frac{1}{x}$ • d $\tan^{-1}\frac{1}{\sqrt{x}}$ $e \cos^{-1}\frac{1}{x}$ • f $\cos^{-1}ax$ **2** Find the derived function in each case. • a $\sin^{-1}(e^x)$ • b $\cos^{-1}(x+2)^2$ c $\sin^{-1}\sqrt{1-x^2}$ • d $\sin^{-1}(\tan x)$ • e $\sin^{-1}\left(\frac{x}{x}\right)$ **3** Find f'(x) for each of these expressions for f(x). • a $\cos^{-1} e^{2x}$ b $\sin^{-1} \cos (x - 1) = c \tan^{-1}(1 + x)$ • d $\cos^{-1}(\ln 3x)$ e $\sec^{-1} 3x$ 4 Differentiate a $\ln(\tan^{-1}\sqrt{x})$ b $\ln\left(\sin^{-1}\frac{1}{\sqrt{x}}\right)$ c $\ln(\sin^{-1}e^x)$ d $e^{\sin^{-1}x}$ **5** Calculate **a** f'(1) where $f(x) = e^{\tan^{-1}\frac{1}{x}}$ **b** f'(0) where $f(x) = \ln(\cos^{-1} x)$ c $f'\left(\frac{3}{4}\right)$ where $f(x) = \sin(\tan^{-1}x)$ d $f'(\sqrt{3})$ where $f(x) = \cos\left(\tan^{-1}\frac{1}{x}\right)$ 6 Find the gradient of the curve with equation **b** $y = (x + \tan^{-1} x)^3$ where x = 1a $y = \ln(\sin^{-1} 2x)$ where $x = \frac{1}{4}$ c $y = \ln (\cos^{-1} (1 - x))$ where $x = \frac{1}{2}$ d $y = e^{\tan^{-1} x^2}$ where x = 18 Show that $y = (\sin^{-1} 3x)^4$ has a minimum turning point at the origin.

Ex. 6.3
1 Differentiate
a
$$x^2 \sin^{-1}x$$
 b $x \sin^{-1}x^2$ c $\sqrt{x} \cos^{-1}x$ d $\sqrt{x} \sin^{-1}\sqrt{x}$
2 Find the derivative of
a $(1 + x^2) \tan^{-1}x$ b $e^x \sin^{-1}x$ c $e^{2x} \cos^{-1}(\frac{x}{2})$ d $\ln x \tan^{-1}x$
3 Find the derived function for each of these.
a $f(x) = \frac{\tan^{-1}x}{x}$ b $f(x) = \frac{\sin^{-1}x}{\sqrt{x}}$ c $f(x) = \frac{\cos^{-1}2x}{x\sqrt{x}}$ d $f(x) = \frac{\tan^{-1}(x+1)}{x^2}$
4 Find $f'(x)$ for each of these.
a $f(x) = \frac{x}{\sin^{-1}x}$ b $f(x) = \frac{x^2}{\cos^{-1}(x-1)}$
c $f(x) = \frac{e^x}{\sin^{-1}2x}$ d $f(x) = \frac{\ln x}{\tan^{-1}x}$
5 Calculate the gradient of the tangent to the curve with equation
a $y = \tan^{-1}(\frac{2x+3}{3x-2})$ at $x = -\frac{1}{2}$ b $y = \sin^{-1}(\frac{1+2\cos x}{2+\cos x})$ at $x = \frac{\pi}{6}$
6 Find the coordinates of the stationary point on the curve with equation
a $y = \tan^{-1}(\frac{e^x}{x})$ b $y = \cos^{-1}(\frac{\ln x}{x})$
7 Show that there are no turning points on the curve with equation
 $y = \sin^{-1}(\frac{1-x}{1+x})$.
9 a Show that $f(x) = \cos^{-1}(\frac{1-x^2}{1+x^2})$ and $g(x) = 2\tan^{-1}x$ have the same derived function.

Answers to AH Maths (MiA), pg. 84, Ex. 6.1		
$1 \ a \ \frac{1}{5}x^{-\frac{4}{5}}$	b $\frac{4}{3}x^{\frac{1}{3}}$	d $\frac{1}{2\sqrt{x-1}}$
Answers to AH Maths (MiA), pg. 85, Ex. 6.2		
1 a	$\frac{2x}{\sqrt{1-x^4}}$	b $\frac{1}{x^2 + 4x + 5}$ d $\frac{-1}{2(x+1)\sqrt{x}}$
2 a	$\frac{e^x}{\sqrt{1-e^{2x}}}$	$f = \frac{-a}{\sqrt{1 - a^2 x^2}}$ $b = \frac{-2(x+2)}{\sqrt{1 - (x+2)^4}}$ $d = \frac{1}{\cos x \sqrt{\cos 2x}}$
3 a	$\frac{1}{\sqrt{a^2 - x^2}}$ $\frac{-2e^{2x}}{\sqrt{1 - e^{4x}}}$ $\frac{1}{x^2 + 2x + 2}$	$d \frac{-1}{x\sqrt{1-(\ln 3x)^2}}$
с 5 а	$\frac{1}{2(1+x)\sqrt{x}\tan^{-1}\sqrt{x}} \\ \frac{e^{x}}{\sin^{-1}(e^{x})\sqrt{1-e^{2x}}} \\ -\frac{e^{\frac{\pi}{4}}}{2} \\ \frac{64}{125}$	b $\frac{-1}{2x\sqrt{x-1}\sin^{-1}\left(\frac{1}{\sqrt{x}}\right)}$ d $\frac{e^{\sin^{-1}x}}{\sqrt{1-x^2}}$ b $-\frac{2}{\pi}$ d $\frac{1}{8}$
с	$\frac{\frac{8\sqrt{3}}{\pi}}{\frac{2\sqrt{3}}{\pi}}$ $\frac{\frac{dy}{dx}}{\frac{dy}{dx}} = \frac{12(\sin^{-1}3x)^3}{\sqrt{1-9x^2}}$: Since	b $\frac{9(4 + \pi)^2}{32}$ d $e^{\frac{\pi}{4}}$ P when $12(\sin^{-1}3x)^3 = 0: x = 0$
	is a solution. $y_{x=0} = 0$ A table of signs confirms that it is a minimum TP.	

Answers to AH Maths (MiA), pg. 86-7, Ex. 6.3 1 a $\frac{x^2}{\sqrt{1-x^2}} + 2x \sin^{-1} x$ b $\frac{2x^2}{\sqrt{1-x^4}} + \sin^{-1} x^2$ c $\frac{1}{2\sqrt{x}}\cos^{-1}x - \sqrt{\frac{x}{1-x^2}}$ d $\frac{1}{2\sqrt{1-x}} + \frac{\sin^{-1}\sqrt{x}}{2\sqrt{x}}$ 2 a $1 + 2x \tan^{-1} x$ b $e^{x} \left[\sin^{-1} x + \frac{1}{\sqrt{1 - x^{2}}} \right]$ c $e^{2x} \left| 2 \cos^{-1} \left(\frac{x}{2} \right) - \frac{1}{\sqrt{4 - x^2}} \right|$ d $\frac{\ln x}{x^2 + 1} + \frac{\tan^{-1} x}{x}$ 3 a $\frac{x - (1 + x^2) \tan^{-1} x}{x^2 (1 + x^2)}$ b $\frac{2x - \sqrt{1 - x^2} \sin^{-1} x}{2x \sqrt{x(1 - x^2)}}$ c $\frac{4x + 3\sqrt{1 - 4x^2}\cos^{-1}2x}{2x^5\sqrt{1 - 4x^2}}$ d $\frac{x-2(x^2+2x+2)\tan^{-1}(x+1)}{x^3(x^2+2x+2)}$ 4 a $\frac{\sqrt{1-x^2}\sin^{-1}x-x}{\sqrt{1-x^2}(\sin^{-1}x)^2}$ b $\frac{2x\sqrt{2x-x^2}\cos^{-1}(x-1)+x^2}{\sqrt{2x-x^2}(\cos^{-1}(x-1))^2}$ c $\frac{e^{x}\sqrt{1-4x^2}\sin^{-1}2x-2e^x}{\sqrt{1-4x^2}(\sin^{-1}2x)^2}$ d $\frac{(1+x^2)\tan^{-1}x-x\ln x}{x(1+x^2)(\tan^{-1}x)^2}$ b $\frac{6-8\sqrt{3}}{13}$ 5 a $-\frac{4}{5}$ **b** $\left(e,\cos^{-1}\left(\frac{1}{e}\right)\right)$ 6 a $(1, \tan^{-1} e)$ 7 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-1}{(1+x)\sqrt{x}} \neq 0$ 9 a $f'(x) = g'(x) = \frac{2}{1 + x^2}$