$26 / 2 / 16$
 Exponentials and Logarithms - Lesson 4
 Using Exponential and Logarithmic Equations in Context

LI

- Solve contextual questions involving exponentials and logarithms. SC
- Logarithmic Rules.
- Using the \log and In buttons on the calculator correctly.

Example 1

In an experiment, the number of cells left after \dagger days is given by $C_{\dagger}=C_{0} e^{-k t}$, where C_{0} is the initial number of cells.
(a) If the experiment began with 250000 cells and half the cells died after 8 days, determine the value of k (to 3 s.f.).
(b) Calculate the time taken (to 1 d.p.) for the cells to reduce to 20% of the initial population.
(a)

$$
\begin{array}{cc}
& C_{+}=C_{0} e^{-k t} \\
& \left(C_{0}=250000, C_{+}=125000, t=8\right) \\
\therefore & 125000=250000 e^{-8 k} \\
\Rightarrow & e^{-8 k}=0.5 \\
\therefore & -8 k=\ln (0.5) \\
\Rightarrow & k=(\ln 0.5) /(-8) \\
\Rightarrow & k=0.086643 \ldots \\
\Rightarrow & k=0.0866(3 \text { s.f. })
\end{array}
$$

(b)

$$
\begin{array}{rlrl}
& C_{\dagger}=C_{0} e^{-0.0866 \ldots t} \\
& & (20 \% \text { of } 250000 & =50000) \\
\therefore & & 50000 & =250000 e^{-0.0866 \ldots t} \\
\Rightarrow & e^{-0.0866 \ldots t}=0.2 \\
\therefore & -0.0866 \ldots t=\ln (0.2) \\
\Rightarrow & & t=(\ln 0.2) /(-0.0866 \ldots) \\
\Rightarrow & & t=18.6 \text { days }
\end{array}
$$

Example 2

The magnitude M of a 'marsquake' is given by
$M=\log _{10}\left(I / I_{0}\right)$ where I is the intensity and $I_{\text {。 }}$ is the intensity of a marsquake measuring 0 .

A marsquake has a magnitude of 8.6 and a second marsquake is 173 times stronger than the first.

Find the magnitude of the second marsquake (1 d.p.).

$$
\begin{array}{ll}
M_{F}= & \log _{10}\left(I_{F} / I_{0}\right), M_{s}=\log _{10}\left(I_{s} / I_{0}\right) \\
& \left(M_{F}=8.6, I_{s}=173 I_{F}\right) \\
& M_{s}=\log _{10}\left(I_{s} / I_{0}\right) \\
\therefore & M_{s}=\log _{10}\left(173 I_{F} / I_{0}\right) \\
\Rightarrow & M_{s}=\log _{10} 173+\log _{10}\left(I_{F} / I_{0}\right) \\
\Rightarrow & M_{s}=\log _{10} 173+M_{F} \\
\Rightarrow & M_{s}=\log _{10} 173+8.6 \\
\Rightarrow & M_{s}=\log _{10} 173+8.6 \\
\Rightarrow & M_{s}=10.8
\end{array}
$$

CfE Higher Maths

pg. 16-17 Ex.1H Q1-5
pg. 18-19 Ex. 1I All Q

