26 / 2 / 16

Exponentials and Logarithms - Lesson 4

Using Exponential and Logarithmic Equations in Context

LI

• Solve contextual questions involving exponentials and logarithms.

<u>SC</u>

- Logarithmic Rules.
- Using the log and In buttons on the calculator correctly.

Example 1

In an experiment, the number of cells left after t days is given by $C_{+} = C_{0} e^{-kt}$, where C_{0} is the initial number of cells.

- (a) If the experiment began with 250 000 cells and half the cells died after 8 days, determine the value of k (to 3 s.f.).
- (b) Calculate the time taken (to 1 d.p.) for the cells to reduce to 20 % of the initial population.

(a)
$$C_{+} = C_{0} e^{-kt}$$

($C_{0} = 250\ 000, C_{+} = 125\ 000, t = 8$)
 $\therefore 125\ 000 = 250\ 000 e^{-8k}$
 $\Rightarrow e^{-8k} = 0.5$
 $\therefore -8k = \ln(0.5)$
 $\Rightarrow k = (\ln 0.5) / (-8)$
 $\Rightarrow k = 0.086\ 643...$

Example 2

The magnitude M of a 'marsquake' is given by M = \log_{10} (I / I $_{\circ}$) where I is the intensity and I $_{\circ}$ is the intensity of a marsquake measuring 0.

A marsquake has a magnitude of 8.6 and a second marsquake is 173 times stronger than the first.

Find the magnitude of the second marsquake (1 d.p.).

$$M_{F} = log_{10} (I_{F}/I_{0}), M_{S} = log_{10} (I_{S}/I_{0})$$
 $(M_{F} = 8.6, I_{S} = 173 I_{F})$
 $M_{S} = log_{10} (I_{S}/I_{0})$
∴ $M_{S} = log_{10} (173 I_{F}/I_{0})$
 $\Rightarrow M_{S} = log_{10} 173 + log_{10} (I_{F}/I_{0})$
 $\Rightarrow M_{S} = log_{10} 173 + M_{F}$
 $\Rightarrow M_{S} = log_{10} 173 + 8.6$
 $\Rightarrow M_{S} = log_{10} 173 + 8.6$
 $\Rightarrow M_{S} = log_{10} 173 + 8.6$

CfE Higher Maths