29 / 8 / 16
 Graphs of Related Functions - Lesson 4

Quadratic Graphs

LI

- State the maximum or minimum turning point coordinates of a quadratic using completed the square form.
- Sketch quadratic graphs, especially using completed the square form.
- Find the equation of a quadratic given its graph and 2 coordinates.

SC

- Complete the Square.

Reminder on Completed the Square Form

Any quadratic can be written in completed the square form :

$$
P(x+Q)^{2}+R
$$

The quadratic then has turning point coordinates ($-Q, R$) and symmetry axis equation $x=-Q$.

- Minimum TP if $P>0$.
- Maximum TP if $P<0$.

To sketch the graph of $y=P(x+Q)^{2}+R$:

- $y=x^{2}$ is x-translated to $y=(x+Q)^{2}$.
- $y=(x+Q)^{2}$ is y-scaled to $y=P(x+Q)^{2}$.
- $y=P(x+Q)^{2}$ is y-translated to $y=P(x+Q)^{2}+R$.

Example 1

Write down the coordinates of the turning point of $y=3(7-x)^{2}-4$ and state if it is a maximum or a minimum.

Comparing with the general form, we have,

$$
\begin{aligned}
3(7-x)^{2}-4 & =3(x-7)^{2}-4 \\
& =P(x+Q)^{2}+R \\
\therefore \quad P=3, Q & =-7, R=-4
\end{aligned}
$$

Turning point is $(7,-4)$ and it is a minimum, as $P=3>0$.

Example 2

Sketch the graph of $y=1-2(x+1)^{2}$, showing the turning point coordinates and the y -intercept.

The TP is $(-1,1)$ and it is a maximum, as $P=-2<0$.

To get the y-intercept, put $x=0: y=-1$.

Or, start with $y=x^{2}$, shift it 1 unit to the left, then y-scale by -2 , then y-translate 1 unit up the y-axis.

Example 3

Find the equation of the following quadratic graph :

Since every quadratic can be written in completed the square form, the general equation is,

$$
y=P(x+Q)^{2}+R
$$

The $T P$ is $(-2,7)$, so, $Q=2$ and $R=7$.
So,

$$
y=P(x+2)^{2}+7
$$

Using the other coordinate $(0,5)$ in this last equation gives,

$$
\left.\begin{array}{rlrl}
& & 5 & =P(0+2)^{2}+7 \\
& \Rightarrow & 4 P & =-2 \\
& \Rightarrow & P & =-1 / 2 \\
& & & y
\end{array}\right)=-\frac{1}{2}(x+2)^{2}+7
$$

Example 4

Write $y=5+8 x-x^{2}$ in the form
$p-q(x+r)^{2}$; hence state the minimum value of

Completing the square gives,

$$
\begin{aligned}
& 5+8 x-x^{2} \\
= & -x^{2}+8 x+5 \\
= & -\left(x^{2}-8 x\right)+5 \\
= & -\left[(x-4)^{2}-16\right]+5 \\
= & -(x-4)^{2}+16+5 \\
= & 21-(x-4)^{2}
\end{aligned}
$$

The expression $21-(x-4)^{2}$ has a maximum value of 21; hence,

$$
\frac{1}{5+8 x-x^{2}} \text { has a minimum value of } \frac{1}{21}
$$

CfE Higher Maths

pg. 65 Ex. 3C All Q

