Polynomials - Lesson 4

Finding Polynomial Roots

LI

• Find roots of polynomials.

<u>SC</u>

• Fully factorise a polynomial.

A root (aka zero) of f(x) is a solution of the equation f(x) = 0

Strategy for Finding Polynomial Roots

- Fully factorise polynomial.
- Solve f(x) = 0.

Example 1

Show that x = 3 is a root of the polynomial $f(x) = x^3 - 4x^2 + x + 6$ and hence find all the other roots.

As R = 0, by the Factor Theorem, (x - 3) is a factor of f(x). So,

$$f(x) = (x - 3)(x^{2} - x - 2)$$

$$\Rightarrow f(x) = (x - 3)(x - 2)(x + 1)$$

For roots, f(x) = 0:

$$(x - 3)(x - 2)(x + 1) = 0$$

$$\Rightarrow x - 3 = 0, x - 2 = 0, x + 1 = 0$$

$$\Rightarrow x = 3, x = 2, x = -1$$

Example 2

Find the value of k given that x = 4 is a root of $f(x) = x^3 - 3x^2 + kx - 4$ and hence find all the roots.

As x = 4 is a root, the Factor Theorem implies that the remainder equals 0. So,

$$4 k + 12 = 0$$

$$\Rightarrow k = -3$$

Hence,

$$f(x) = (x - 4)(x^2 + x + 1)$$

For roots, f(x) = 0; hence,

$$(x - 4)(x^{2} + x + 1) = 0$$

$$\Rightarrow x - 4 = 0, x^{2} + x + 1 = 0$$

The quadratic has discriminant equal to -3; hence, the quadratic has no real roots. So, the only root of f(x) is,

$$x = 4$$

CfE Higher Maths

pg. 163 - 4 Ex. 7I Q 2 a, 3 e, 4, 9.

Questions - Ex. 7I

- 2 Solve each polynomial equation.
 - $3x^3 + 9x^2 3x 9 = 0$
- 3 Solve these polynomial equations.
 - $x^4 + 2x^3 21x^2 + 5x + 8 = x^3 + 6x 12$
- 4 Given that the equation $2x^3 + 3x^2 + ax 2 = 0$ has a root at x = 1, determine the value of a and solve for x.
- 9 Valentine's cookies are packed in gift boxes in the shape of a square based cuboid. The height of the box is 4 cm greater than its width and the volume of the box is 128 cm³. Determine the dimensions of the box.

Answers

2 a
$$x = -3, -1, 1$$

3 e
$$x = -5, -1, 1, 4$$

4
$$a = -3$$

$$x = -2, -\frac{1}{2}, 1$$

9
$$4 \times 4 \times 8$$