24 / 3 / 16

Straight Lines - Lesson 4

Medians, Perpendicular Bisectors and Altitudes

LI

- Calculate equations of medians, perpendicular bisectors and altitudes.
- Know the concurrency properties of the above lines.

<u>SC</u>

- Midpoint formula.
- Straight line equation.

To work out the coordinates of the halfway point (aka midpoint) on a line joining 2 points $A(x_1, y_1)$ and $B(x_2, y_2)$, use the midpoint formula:

Midpoint M =
$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

From a vertex of a triangle to midpoint of opposite side

- Use A and B to get midpoint M.
- Then use C and M to get gradient and equation of median.

Example 1

Find the equation of the median from B in the triangle with vertices A(2,1), B(5,-3) and C(0,3).

$$\mathsf{Midpoint}\,\mathsf{M}\,=\,\left(\begin{array}{c|c}2\,+\,0\\\hline 2\end{array}\right)\,\,\frac{1\,+\,3}{2}\right)$$

$$m_{BM} = \frac{-3 - 2}{5 - 1} = \frac{-5}{4} \Rightarrow m_{BM} = -\frac{5}{4}$$

$$y - b = m(x - a)$$

 $y - (-3) = -\frac{5}{4}(x - 5)$

$$4y + 12 = -5(x - 5)$$

$$4y + 12 = -5x + 25$$

$$5 x + 4 y = 13$$

Perpendicular Bisectors

Bisects a line at right angles

- Use A and B to get midpoint M and gradient of AB.
- Then use perp. gradients to get gradient of perp. bisector; then equation of perp. bisector.

Example 2

Find the equation of the perpendicular bisector of the line joining S(3,8) and T(4,-4).

Midpoint M =
$$\left(\frac{3 + 4}{2} , \frac{8 + (-4)}{2} \right)$$

$$\therefore \quad M\left(\frac{7}{2},2\right)$$

$$m_{ST} = \frac{-4 - 8}{4 - 3} = \frac{-12}{1} \Rightarrow m_{ST} = -12$$

$$\therefore \quad \mathbf{m}_{PERP.} = \frac{1}{12}$$

$$y - b = m(x - a)$$

$$y - 2 = \frac{1}{12} (x - \frac{7}{2})$$

$$12 y - 24 = x - \frac{7}{2}$$

$$24 y - 48 = 2 x - 7$$

$$2 x - 24 y = -41$$

Altitudes

From a vertex to opposite side, cutting at right angles

- Use C and B to get gradient of line BC.
- Then use perp. gradients to get gradient of altitude; then equation of altitude.

Example 3

Find the equation of the altitude from A in the triangle with vertices A(2, -4), B(-2, -8) and C(5, 1).

$$m_{BC} = \frac{1 - (-8)}{5 - (-2)} = \frac{9}{7} \Rightarrow m_{BC} = \frac{9}{7}$$

$$\therefore \quad \mathbf{m}_{PERP.} = -\frac{7}{9}$$

$$y - b = m(x - a)$$

 $y - (-4) = -\frac{7}{9}(x - 2)$
 $9y + 36 = -7(x - 2)$
 $9y + 36 = -7x + 14$
 $7x + 9y = -22$

Type of Line	What u need 2 work out the equation
Median	Midpoint of opposite side and opposite vertex
Perp. Bis.	Midpoint of given line and gradient perp. to given line
Altitude	Gradient perp. to opposite side and opposite vertex

Concurrent means meeting at a common point

• The 3 medians of a triangle are concurrent at the centroid.

• The 3 perpendicular bisectors of a triangle are concurrent at the circumcentre.

• The 3 altitudes of a triangle are concurrent at the orthocentre.

To work out the distance between 2 points $A(x_1, y_1)$ and $B(x_2, y_2)$, use the distance formula:

$$d_{AB} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

CfE Higher Maths

pg. 304 - 5 Ex. 13F All Q