31 / 1 / 18
 Matrices and Systems of Equations - Lesson 4

Matrix Multiplication

LI

- Multiply matrices.
- Take powers of a matrix.
- Orthogonality.
- Matrix Properties 2.

SC

- Primary school arithmetic.

The matrix product $C=A B$ of the $m \times n$ matrix A and the $n \times p$ matrix B is obtained by :

$$
C_{i j}=\sum_{\mathrm{k}=1}^{n} A_{\mathrm{ik}} B_{\mathrm{kj}} \quad \begin{gathered}
C \text { is an } m \times \mathrm{p} \\
\text { matrix }
\end{gathered}
$$

Note that the matrix product $A B$ only makes sense provided that the number of columns of A equals the number of rows of B.

Think of dominoes :

$C_{i j}$ is obtained by taking the scalar product of the $i^{\text {th }}$ row of A with the $j^{\text {th }}$ column of B.

In the matrix product $A B, A$ is post-multiplied by B and B is pre-multiplied by A.

MAJOR WARNING :
In general,

$$
A B \neq B A
$$

Powers of a matrix can now be taken.
The $n^{\text {th }}$ power of A is the matrix:

$$
A^{n}=\underbrace{A \times A \times A \ldots \times A}_{n \text { times }}
$$

$$
\begin{gathered}
\text { An } n \times n \text { matrix } A \text { is orthogonal if: } \\
A A^{\top}=A^{\top} A=I_{n} \\
\hline
\end{gathered}
$$

Matrix Properties - 2

8) $(A B) C=A(B C)$
9) $A(B+C)=A B+A C$
10) $(A+B) C=A C+B C$
11) $A I=A=I A$
12) $(A B)^{\top}=B^{\top} A^{\top}$

Example 1

Find $\left(\begin{array}{cc}-1 & 3 \\ 4 & 6\end{array}\right)\left(\begin{array}{ccc}1 & 4 & -2 \\ 0 & 1 & 6\end{array}\right)$.
$\left(\begin{array}{cc}-1 & 3 \\ \hdashline 4 & 6\end{array}\right)\left(\begin{array}{c:c:c}1 & 4 & -2 \\ 0 & 1 & 6\end{array}\right)$

$=\left(\begin{array}{rrr}(-1)(1)+(3)(0) & (-1)(4)+(3)(1) & (-1)(-2)+(3)(6) \\ (4)(1)+(6)(0) & (4)(4)+(6)(1) & (4)(-2)+(6)(6)\end{array}\right)$
$=\left(\begin{array}{rrr}-1 & -1 & 20 \\ 4 & 22 & 4\end{array}\right)$

Example 2
Find A^{3} if $A=\left(\begin{array}{rr}1 & 2 \\ -4 & 0\end{array}\right)$.

$$
\left.\begin{array}{rl}
& A^{2}=\left(\begin{array}{rr}
1 & 2 \\
-4 & 0
\end{array}\right)\left(\begin{array}{rr}
1 & 2 \\
-4 & 0
\end{array}\right) \\
\Rightarrow & A^{2}=\left(\begin{array}{rrr}
1 & -8 & 2+0 \\
-4+0 & -8 & +0
\end{array}\right) \\
\Rightarrow & A^{2}=\left(\begin{array}{rr}
-7 & 2 \\
-4 & -8
\end{array}\right) \\
\Rightarrow & A^{3}=\left(\begin{array}{rr}
1 & 2 \\
-4 & 0
\end{array}\right)\left(\begin{array}{rr}
-7 & 2 \\
-4 & -8
\end{array}\right) \\
\Rightarrow & A^{3} \\
\Rightarrow & =\left(\begin{array}{rrr}
-7 & -8 \\
28 & +0 & -8
\end{array}\right) \\
\Rightarrow & A^{3}
\end{array}\right)
$$

Example 3

If $D=\left(\begin{array}{rr}2 & -1 \\ 3 & 5\end{array}\right)$, show that $D^{2}=a D+b I_{2}(a, b \in \mathbb{R})$.
Hence show that $D^{3}=36 D-91 I_{2}$.

$$
\begin{array}{ll}
& D^{2}=\left(\begin{array}{rr}
2 & -1 \\
3 & 5
\end{array}\right)\left(\begin{array}{rr}
2 & -1 \\
3 & 5
\end{array}\right) \\
\Rightarrow & D^{2}=\left(\begin{array}{rr}
1 & -7 \\
21 & 22
\end{array}\right)=a\left(\begin{array}{rr}
2 & -1 \\
3 & 5
\end{array}\right)+b\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
\therefore & \left(\begin{array}{rr}
1 & -7 \\
21 & 22
\end{array}\right)=\left(\begin{array}{cc}
2 a+b & -a \\
3 a & 5 a+b
\end{array}\right) \\
\Rightarrow & a=7, b=-13
\end{array}
$$

$$
\therefore \quad D^{2}=7 D-13 I_{2}
$$

$$
D^{3}=D D^{2}
$$

$$
\therefore
$$

$$
D^{3}=D\left(7 D-13 I_{2}\right)
$$

$$
\Rightarrow \quad D^{3}=7 D^{2}-13 D
$$

$$
\Rightarrow \quad D^{3}=7\left(7 D-13 I_{2}\right)-13 D
$$

$$
\Rightarrow \quad D^{3}=49 D-91 I_{2}-13 D
$$

$$
\Rightarrow \quad D^{3}=36 D-91 I_{2}
$$

Example 4

Show that $R=\left(\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ is orthogonal.

$$
\begin{aligned}
& R^{\top}=\left(\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) \\
\therefore & R^{\top} R=\left(\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \\
\Rightarrow & R^{\top} R=\left(\begin{array}{cc}
c^{2}+s^{2} & -s c+s c \\
-s c+s c & c^{2}+s^{2}
\end{array}\right) \quad \begin{array}{l}
c=\cos \theta \\
s=\sin \theta
\end{array} \\
\Rightarrow & R^{\top} R=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)=I_{2}
\end{aligned}
$$

$$
\text { As } R^{\top} R=I_{2}, R \text { is orthogonal }
$$

Example 5

Prove that $A(B+C)=A B+A C$.

Considering the $(i, j)^{\text {th }}$ entry of $A(B+C)$, we have,

$$
\begin{aligned}
(A(B+C))_{i j} & =\sum_{k=1}^{n} A_{i k}(B+C)_{k j} \\
& =\sum_{k=1}^{n} A_{i k}\left(B_{k j}+C_{k j}\right) \\
& =\sum_{k=1}^{n}\left(A_{i k} B_{k j}+A_{i k} C_{k j}\right) \\
& =\sum_{k=1}^{n} A_{i k} B_{k j}+\sum_{k=1}^{n} A_{i k} C_{k j} \\
& =(A B)_{i j}+(A C)_{i j} \\
\therefore \quad A(B & +C)=A B+A C
\end{aligned}
$$

$$
\begin{aligned}
& \text { AH Maths - MiA (} 2^{\text {nd }} \text { Edn.) } \\
& \text { - pg. 235-6 Ex. 13.3 Q } 1-5 . \\
& \text { - pg. 238-9 Ex. } 13.5 \text { Q } 1-10 .
\end{aligned}
$$

Ex. 13.3

1 Evaluate
a $\left(\begin{array}{ll}2 & 1\end{array}\right)\binom{1}{3}$
b $\left(\begin{array}{ll}6 & 2\end{array}\right)\binom{-1}{5}$
c $\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)$
d $\left(\begin{array}{lll}2 & 1 & 0\end{array}\right)\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)$
e $\left(\begin{array}{llll}2 & 2 & 3 & -1\end{array}\right)\left(\begin{array}{r}-1 \\ -1 \\ 0 \\ 1\end{array}\right)$
f($\left(\begin{array}{llll}6 & 8 & 4 & 2\end{array}\right)\left(\begin{array}{l}1 \\ 3 \\ 5 \\ 7\end{array}\right)$
$\mathrm{g}\left(\begin{array}{ll}2 & 3\end{array}\right)\binom{x}{y}$
h $\left(\begin{array}{lll}2 & 3 & -4\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$

2 Evaluate each matrix product.
a $\left(\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right)\binom{1}{2}$
b $\left(\begin{array}{ll}3 & 1 \\ 4 & 3\end{array}\right)\binom{-1}{2}$
c $\left(\begin{array}{rr}2 & -1 \\ 4 & 3\end{array}\right)\binom{-2}{1}$
d $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{2}{5}$
e $\left(\begin{array}{rr}1 & 1 \\ 0 & -1\end{array}\right)\binom{3}{5}$
f $\left(\begin{array}{rr}2 & 3 \\ 4 & -1\end{array}\right)\binom{5}{-7}$
$\mathrm{g}\left(\begin{array}{rr}2 & 3 \\ -1 & 5\end{array}\right)\binom{x}{y}$
h $\left(\begin{array}{rr}2 & -1 \\ 3 & 7\end{array}\right)\binom{p}{q}$
i $\left(\begin{array}{rr}1 & 2 \\ -1 & 1\end{array}\right)\left(\begin{array}{ll}2 & -2 \\ 2 & -1\end{array}\right)$
j $\left(\begin{array}{ll}2 & 0 \\ 4 & 1\end{array}\right)\left(\begin{array}{rr}0 & -2 \\ 1 & 2\end{array}\right)$
$\mathrm{k}\left(\begin{array}{lll}2 & 1 & 3 \\ 3 & 1 & 2\end{array}\right)\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)$
$1\left(\begin{array}{rrr}3 & 1 & 1 \\ -1 & 1 & 2\end{array}\right)\left(\begin{array}{rr}1 & 0 \\ -1 & 2 \\ 0 & 1\end{array}\right)$
$m\left(\begin{array}{rrr}1 & 3 & 2 \\ -2 & 0 & 1 \\ 4 & 2 & 3\end{array}\right)\left(\begin{array}{r}1 \\ -1 \\ 2\end{array}\right)$
n $\left(\begin{array}{lll}1 & 1 & 0 \\ 2 & 0 & 1 \\ 3 & 4 & 5\end{array}\right)\left(\begin{array}{r}2 \\ -2 \\ 1\end{array}\right)$
o $\left(\begin{array}{lll}1 & 1 & 0 \\ 2 & 0 & 1 \\ 3 & 4 & 5\end{array}\right)\left(\begin{array}{rr}2 & 1 \\ -2 & 2 \\ 1 & 0\end{array}\right)$
$\mathrm{p}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}p \\ q \\ r\end{array}\right)$

3 Simplify these matrix expressions.
a $\left(\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right)\binom{\cos \theta}{\sin \theta}$
$\mathrm{b}\left(\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)\binom{\sin \theta}{\cos \theta}$
c $\left(\begin{array}{rr}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right)\left(\begin{array}{rr}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right)$

4 Given that $A=\left(\begin{array}{rr}1 & 2 \\ -1 & 1\end{array}\right)$ calculate a $A^{2} \quad$ b A^{3}
5 Express each product as a single matrix.
a $\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)\left(\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right)$
$\mathrm{b}\left(\begin{array}{rr}1 & 2 \\ 4 & -1\end{array}\right)\left(\begin{array}{rr}2 & -1 \\ 1 & 3\end{array}\right)$
c $\left(\begin{array}{ll}1 & 2 \\ 5 & 7\end{array}\right)\left(\begin{array}{rr}-1 & 2 \\ 3 & -2\end{array}\right)$
d $\left(\begin{array}{ll}0 & 1 \\ 2 & 1\end{array}\right)\left(\begin{array}{rr}1 & 2 \\ -1 & 3\end{array}\right)$
$\mathrm{e}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}2 & 7 \\ 1 & 3\end{array}\right)$
f $\left(\begin{array}{rr}1 & 3 \\ 2 & -1\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$

Ex. 13.5

1 Simplify
a $\left(\begin{array}{lll}4 & 1 & 5 \\ 2 & 1 & 3\end{array}\right)\left(\begin{array}{ll}1 & 3 \\ 3 & 2 \\ 3 & 1\end{array}\right)$
$\mathrm{b}\left(\begin{array}{lll}3 & 1 & 4 \\ 1 & 2 & 5\end{array}\right)\left(\begin{array}{lll}4 & 1 & 2 \\ 1 & 3 & 1 \\ 7 & 4 & 3\end{array}\right)$
c $\left(\begin{array}{rrr}1 & 0 & -1 \\ 1 & 1 & -1 \\ -1 & 1 & 0\end{array}\right)\left(\begin{array}{rrr}2 & -1 & -1 \\ 2 & 1 & -1 \\ 0 & 2 & 2\end{array}\right)$

2 Given $A=\left(\begin{array}{rrr}4 & 2 & 1 \\ 3 & 0 & -2 \\ 6 & 5 & 1\end{array}\right), B=\left(\begin{array}{rrr}4 & 7 & 2 \\ 1 & -1 & 0 \\ 2 & 3 & -1\end{array}\right), C=\left(\begin{array}{rrr}2 & 1 & 3 \\ 0 & 1 & -1 \\ -2 & 3 & 0\end{array}\right)$ and $D=\left(\begin{array}{rrr}2 & 1 & 0 \\ 3 & 0 & -1 \\ 2 & 4 & 7\end{array}\right)$ evaluate a $A B \quad$ b $C D \quad$ c $A B+D^{2} \quad$ d $C^{2} \quad$ e $C^{3} \quad$ f $A B+C D$

3 a Given that $R=\left(\begin{array}{rrr}2 & -1 & 1 \\ -3 & 4 & -3 \\ -5 & 5 & -4\end{array}\right)$ and $S=\left(\begin{array}{rrr}-1 & 1 & -1 \\ 3 & -3 & 3 \\ 5 & -5 & 5\end{array}\right)$, show that $R S=O$.
b Does $S R=O$?
4 Given that $A=\left(\begin{array}{rr}2 & 1 \\ -1 & 3\end{array}\right)$ and $B=\left(\begin{array}{rr}3 & 1 \\ -2 & 4\end{array}\right)$ find which of these are true.
a $A B=B A$
b $A^{2}-B^{2}=(A+B)(A-B)$
c $(A+B)^{2}=A^{2}+2 A B+B^{2}$
d $(A-B)^{2}=A^{2}-2 A B+B^{2}$

5 Explore the claim that for any matrix A, both $A A^{\prime}$ and $A^{\prime} A$ are symmetric.
6 a Given that $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right)$ and $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ show that $A^{2}=5 I+2 A$.
b Multiplying this equation by A, express A^{3} in the form $a I+b A$.
[Hint: you know an expression for A^{2}.]
7 a If $A=\left(\begin{array}{ll}3 & 4 \\ 2 & 1\end{array}\right)$ show that $A^{2}=4 A+5 I$.
b Hence show that $A^{3}=21 A+20 I$.
8 a If $B=\left(\begin{array}{rr}2 & 3 \\ -1 & 2\end{array}\right)$ show that $B^{2}=4 B-7 I$.
b Express B^{3} in the form $a B+b I$ where $a, b \in R$.
9 a Show that $B^{2}=\left(\begin{array}{ll}17 & 8 \\ 16 & 9\end{array}\right)$ where $B=\left(\begin{array}{ll}3 & 2 \\ 4 & 1\end{array}\right)$.
b By considering the equation $a\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)+b\left(\begin{array}{ll}3 & 2 \\ 4 & 1\end{array}\right)=\left(\begin{array}{ll}17 & 8 \\ 16 & 9\end{array}\right)$ show that $B^{2}=a I+b B$ and find the values of a and b.
c Use this to express B^{3}, B^{4} and B^{5} in terms of I and B only.
10 Given $C=\left(\begin{array}{rr}2 & 5 \\ -3 & 1\end{array}\right)$ find p and q such that $C^{2}=p C+q I$.

Answers to AH Maths (MiA), pg. 235-6, Ex. 13.3
1 a (5)
b
(4)
c (10)
d (1)
e (-5)
f (64)
g $(2 x+3 y)$
h $(2 x+3 y-4 z)$
2 a $\binom{4}{11}$
b $\binom{-1}{2}$
c $\quad\binom{-5}{-5}$
d $\binom{5}{2}$
e $\binom{8}{-5}$
f $\binom{-11}{27}$
g $\binom{2 x+3 y}{5 y-x}$
$\mathrm{h}\left(\begin{array}{c}2 p \\ 3 p\end{array}\right.$
$\mathrm{k} \quad\binom{8}{9}$
i $\quad\left(\begin{array}{rr}6 & -4 \\ 0 & 1\end{array}\right)$
j $\quad\left(\begin{array}{ll}0 & -4 \\ 1 & -6\end{array}\right)$
$1 \quad\left(\begin{array}{rr}2 & 3 \\ -2 & 4\end{array}\right)$
m $\left(\begin{array}{l}2 \\ 0 \\ 8\end{array}\right)$
n $\quad\left(\begin{array}{l}0 \\ 5 \\ 3\end{array}\right)$

- $\quad\left(\begin{array}{rr}0 & 3 \\ 5 & 2 \\ 3 & 11\end{array}\right)$
$\mathrm{p} \quad\left(\begin{array}{l}p \\ q \\ r\end{array}\right)$
$\begin{array}{ll}3 \text { a } & \binom{1}{0} \\ 4 \text { a } & \left(\begin{array}{lr}-1 & 4 \\ -2 & -1\end{array}\right)\end{array}$
b $\binom{0}{1}$
c $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
b $\left(\begin{array}{rr}-5 & 2 \\ -1 & -5\end{array}\right)$
5 a $\quad\left(\begin{array}{ll}1 & 5 \\ 5 & 4\end{array}\right)$
b $\left(\begin{array}{rr}4 & 5 \\ 7 & -7\end{array}\right)$
c $\quad\left(\begin{array}{rr}5 & -2 \\ 16 & -4\end{array}\right)$
d $\quad\left(\begin{array}{rr}-1 & 3 \\ 1 & 7\end{array}\right)$
e $\left(\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right)$
f $\quad\left(\begin{array}{ll}a+3 c & b+3 d \\ 2 a-c & 2 b-d\end{array}\right)$

Answers to AH Maths (MiA), pg. 238-9, Ex. 13.5

$$
\begin{aligned}
& 1 \text { a }\left(\begin{array}{ll}
22 & 19 \\
14 & 11
\end{array}\right) \quad \text { b }\left(\begin{array}{lll}
41 & 22 & 19 \\
41 & 27 & 19
\end{array}\right) \text { c }\left(\begin{array}{rrr}
2 & -3 & -3 \\
4 & -2 & -4 \\
0 & 2 & 0
\end{array}\right) \\
& 2 \text { a }\left(\begin{array}{rrr}
20 & 29 & 7 \\
8 & 15 & 8 \\
31 & 40 & 11
\end{array}\right) \text { b }\left(\begin{array}{rrr}
13 & 14 & 20 \\
1 & -4 & -8 \\
5 & -2 & -3
\end{array}\right) \text { c }\left(\begin{array}{rrr}
27 & 31 & 6 \\
12 & 14 & 1 \\
61 & 70 & 56
\end{array}\right) \\
& \mathrm{d}\left(\begin{array}{rrr}
-2 & 12 & 5 \\
2 & -2 & -1 \\
-4 & 1 & -9
\end{array}\right) \quad \text { e }\left(\begin{array}{rrr}
-14 & 25 & -18 \\
6 & -3 & 8 \\
10 & -30 & -13
\end{array}\right) \\
& \text { f }\left(\begin{array}{rrr}
33 & 43 & 27 \\
9 & 11 & 0 \\
36 & 38 & 8
\end{array}\right) \\
& 3 \text { a Proof b Yes } \\
& 4 \text { All false } \\
& 5 \text { True; proof } \\
& 6 \text { a Proof b } \quad A^{3}=10 I+9 A \\
& 7 \text { a Proof b Proof } \\
& 8 \text { a Proof b } \quad B^{3}=9 B-28 I \\
& 9 \text { a Proof b } B^{2}=4 B+5 I \\
& \text { c } B^{3}=21 B+20 I ; B^{4}=104 B+105 I ; B^{5}=521 B+520 I \\
& 10 p=3 ; q=-17
\end{aligned}
$$

