$21 / 2 / 18$
 Vectors, Lines and Planes - Lesson 4
 Intersections of Lines and Planes

LI

- Find intersections of lines and planes.
- Find intersections of 2 and 3 planes.
- Find the angle between 2 planes and the angle between a line and a plane.
SC
- Scalar product.
- Equations of lines and planes.
- Gaussian elimination.

Intersection of a Line and a Plane

Get line in parametric form and plane in Cartesian form: substitute parametric equations for x, y and z into plane equation. An equation of the following form will result :

$$
A t+B=0
$$

1 Intersection Point $(A \neq 0)$:

No Intersection $(A=0, B \neq 0)$:

Infinitely Many Intersection Points $(A=0, B=0)$:

Intersection of 2 Planes

This involves solving a pair of equations for x, y and z; the augmented matrix, after row-reduction, can take various forms.

Intersection in a Plane :

Intersection in a Line :

At least one of
$a, b, c \neq 0$
At least one of
$e, f \neq 0$

No Intersection:

At least one of
$a, b, c \neq 0$

$$
q \neq 0
$$

The angle between 2 planes is the angle between their normal vectors

Intersection(s) of 3 Planes

This involves solving 3 equations for x, y and z; the augmented matrix, after row-reduction, can take various forms.

Type 1:

At least one of $a, b, c \neq 0$

3 coincident planes

Solutions : infinitely many points in a plane

Type 2:

$$
\begin{gathered}
\text { At least one of } \\
a, b, c \neq 0 \\
k \neq 0
\end{gathered}
$$

(a) 2 plane equations the same 2 coincident planes, 1 different from these

Solutions: none
(b) No plane equations the same 3 distinct planes

Solutions: none
Type 3:

> At least one of
$a, b, c \neq 0$

> At least one of $e, f \neq 0$
(a) 2 distinct normals
(b) 3 distinct normals

Solutions: 1 line

3 distinct planes

Solutions: 1 line

Type 4:

$$
\left(\begin{array}{lll|l}
a & b & c & j \\
0 & e & f & k \\
0 & 0 & 0 & 1
\end{array}\right)
$$

At least one of
$a, b, c \neq 0$

At least one of
$e, f \neq 0$

(a) 2 distinct normals
2 parallel planes,
1 intersecting both these

Solutions: 2 lines
(b) 3 distinct normals

3 distinct planes

Solutions: 3 lines
Type 5 :
$\left(\begin{array}{lll|l}a & b & c & j \\ 0 & e & f & k \\ 0 & 0 & i & i\end{array}\right)$

$$
\begin{gathered}
\hline \text { At least one of } \\
a, b, c \neq 0 \\
\hline
\end{gathered}
$$

At least one of $e, f \neq 0$

3 distinct planes

Solutions: 1 point

Example 1

Find the point of intersection of the line,

$$
\frac{x-7}{3}=\frac{y-11}{4}=\frac{z-24}{13}
$$

with the plane $6 x+4 y-5 z=28$. Also determine the angle between the line and the plane.

Substituting the parametric line equations,

$$
\begin{aligned}
& x=3 t+7 \\
& y=4 t+11 \\
& z=13 t+24
\end{aligned}
$$

into the plane equation gives, upon simplification (check !),

$$
\begin{aligned}
& & -31 \dagger & =62 \\
\Rightarrow & & \dagger & =-2
\end{aligned}
$$

Substituting this value of t into the parametric line equations gives the intersection point of the line and the plane.

Intersection point : (1, 3, - 2)

Using the line direction vector $(3,4,13)^{\top}$ and the plane normal vector $(6,4,-5)^{\top}$ gives,

$$
\begin{array}{rlrl}
\cos \alpha & =-\frac{31}{\sqrt{194} \sqrt{77}} \\
\Rightarrow & & \alpha & =75.3^{\circ} \\
\theta & =90^{\circ}-75.3^{\circ} \\
\Rightarrow & \theta & =14.7^{\circ}
\end{array}
$$

Example 2

Show that the line,

$$
\frac{x-3}{12}=\frac{y+4}{-4}=\frac{z-1}{3}
$$

and the plane $2 x+3 y-4 z=-10$ intersect in a line.

Substituting the parametric line equations,

$$
\begin{aligned}
& x=12 t+3 \\
& y=-4 t-4 \\
& z=3 t+1
\end{aligned}
$$

into the plane equation gives, upon simplification (check!),

$$
\begin{array}{cc}
& 0=0 \\
\therefore \quad & \text { Infinitely many intersection points }
\end{array}
$$

Example 3

Find the intersection of the 3 planes,

$$
\begin{aligned}
x-y+z & =10 \\
2 x-y+3 z & =5 \\
4 x-2 y+6 z & =10
\end{aligned}
$$

Notice that the last 2 equations are identical. The augmented matrix is,

$\xrightarrow{R_{3} \rightarrow R_{3}-2 R_{2}}\left(\begin{array}{rrr|r}1 & -1 & 1 & 10 \\ 2 & -1 & 3 & 5 \\ 0 & 0 & 0 & 0\end{array}\right)$
$\xrightarrow{R_{2} \rightarrow R_{2}-2 R_{1}}\left(\begin{array}{rrr|r}1 & -1 & 1 & 10 \\ 0 & 1 & 1 & -15 \\ 0 & 0 & 0 & 0\end{array}\right)$
The form of the matrix, and the fact that there are 2 distinct normals, shows that we are in Type 3 (a).

Let $z=t$. Then the row-reduced equations become,

$$
\begin{aligned}
& x-y+t=10 \\
& y+t=-15 \Rightarrow \underline{y=-15-t} \\
& \therefore \quad x=10-\dagger-15-\dagger \\
& \Rightarrow \quad x=-5-2 \dagger
\end{aligned}
$$

Intersection: the line $\frac{x+5}{-2}=\frac{y+15}{-1}=\frac{z}{1}(=t \in \mathbb{R})$

AH Maths - MiA (2 ${ }^{\text {nd }}$ Edn.)

- pg. 300-1 Ex. 15.10

Q 1 a, b, 2 c, 4 a.

- pg. 303 Ex. 15.12 Q 1.
- pg. 307 Ex. 15.13

Q 1 a, b, c, $2 a, b$.

Ex. 15.10

1 For each of these plane and line pairs find
i the coordinates of the point of intersection
ii the angle between the line and the plane.
a $\frac{x-12}{5}=\frac{y+7}{-4}=\frac{z-5}{3} ; 5 x+3 y-z=14$
b $x-3=2 t, y+3=0, z-2=-t ; 3 x-4 y+2 z=33$
2 Show that in each case the given line is parallel to the given plane.
c $\frac{x-9}{3}=\frac{y-4}{2}=\frac{z+3}{-1}$ and $3 x-4 y+z=9$
4 Show that in each case the given line lies within the given plane.
a $\frac{x-3}{12}=\frac{y+4}{-4}=\frac{z-1}{3}$ and $2 x+3 y-4 z+10=0$

Ex. 15.12

1 Find the equations of the line of intersection of each of these pairs of planes.
a $x-y-3 z+7=0$ and $2 x+3 y-z+4=0$
b $x-2 y-2 z+8=0$ and $2 x-y-2 z=1$

Ex. 15.13

1 Determine how each of these sets of three planes intersect. Give the coordinates of the point of intersection or the equations of any lines of intersection.
a $x+2 y+3 z=3$
$2 x-y+4 z=5$
$x-3 y+2 z=2$
b $x+2 y+3 z=3$
c $2 x+y+3 z=5$
$2 x-y+4 z=5$
$x-3 y+z=2$
$3 x-y+2 z=1$
$x-2 y-z=-3$

2 Comment on the intersection of these sets of planes.
a $x+4 y+5 z=6$
$2 x+8 y+10 z=12$
b $2 x-4 y+4 z=8$
$8 x+32 y+40 z=48$
$x-2 y+2 z=7$
$3 x-6 y+6 z=-2$

Answers to AH Maths (MiA), pg. 300-1, Ex. 15.10
1 a $(2,1,-1) \quad 13 \cdot 8^{\circ}$
b $(7,-3,0) \quad 19 \cdot 4^{\circ}$

2 Proof, show that the direction vector of the line is perpendicular to the normal vector to the plane.

4 Proof (as Q2 but also show that "the" point on the line lies in the plane)

Answers to AH Maths (MiA), pg. 303, Ex. 15.12
1 a $\frac{x+5}{2}=\frac{y-2}{-1}=\frac{z}{1} \quad$ b $\frac{x}{2}=\frac{y-9}{-2}=\frac{z+5}{3}$
Answers to AH Maths (MiA), pg. 307, Ex. 15.13
1 a In the single point $\left(\frac{13}{5}, \frac{1}{5}, 0\right)$
b In the line $\frac{13-5 x}{11}=\frac{1-5 y}{2}=\frac{z}{1}$
c In three parallel lines

$$
\begin{aligned}
& \frac{5 x+4}{-5}=\frac{5 y+17}{-5}=\frac{z}{1} \\
& \frac{5 x+13}{-5}=\frac{5 y-1}{-5}=\frac{z}{1} \\
& \frac{5 x-5}{-5}=\frac{5 y-10}{-5}=\frac{z}{1}
\end{aligned}
$$

2 a Three coincident planes
b Three parallel planes

