6/9/17

Unit 1 : Integral Calculus - Lesson 4

Integration by Parts

LI

- Integrate a product of functions.

SC

- Integration by Parts formula.

```
A product of functions is integrated
    using Integration by Parts
```

The Product Rule for differentiating functions u and v (where the dash means differentiate wrt x) is,

$$
(u v)^{\prime}=u^{\prime} v+u v^{\prime}
$$

Integrating both sides wrt \times gives,

$$
\begin{aligned}
& \int(u v)^{\prime} d x=\int u^{\prime} v d x+\int u v^{\prime} d x \\
\therefore & u v=\int u^{\prime} v d x+\int u v^{\prime} d x \\
\Rightarrow & \int u v^{\prime} d x=u v-\int u^{\prime} v d x
\end{aligned}
$$

For definite integrals,

$$
\int_{a}^{b} u v^{\prime} d x=[u v]_{a}^{b}-\int_{a}^{b} u^{\prime} v d x
$$

Thus, to integrate a product of functions, one of the functions must be chosen to be integrated, the other chosen to be differentiated

The choice is made in such a way that, generally speaking, the integral on the RHS of the above formulae is no more difficult to evaluate than the original integral

Some guiding principles ($n \in \mathbb{N}, m \in \mathbb{R}$):

Integrand	Differentiate
$x^{n} \sin m x$ or $x^{n} \cos m x$	x^{n}
$x^{n} e^{m x}$	x^{n}
$x^{n} \ln (m x)$	$\ln (m x)$

Example 1

Integrate $x \cos x$.
Let $I=\int x^{u} \cos ^{v^{\prime}} x d x$.

$$
\begin{aligned}
& \frac{d}{d x}\left|\begin{array}{c}
u=x, \quad v=\sin x \\
u^{\prime}=1, v^{\prime}=\cos x
\end{array}\right| \int \\
& \\
& \quad I=u v-\int u^{\prime} v d x \\
& \therefore \quad I=x \sin x-\int 1 \cdot \sin x d x \\
& \Rightarrow \quad I=x \sin x-\int \sin x d x \\
& \Rightarrow \quad I=x \sin x+\cos x+C
\end{aligned}
$$

Example 2

Integrate $x^{2} \ln x$.
Let $I=\int x^{x^{\prime}} \ln ^{u} x d x$.

$$
\begin{aligned}
& \frac{d}{d x}\left|\begin{array}{rl}
u & =\ln x, \quad v=x^{3} / 3 \\
u^{\prime}=1 / x, & v^{\prime}=x^{2}
\end{array}\right| \int \\
& I=u v-\int u ' v d x \\
& \therefore \quad I=(1 / 3) x^{3} \ln x-(1 / 3) \int(1 / x) \cdot x^{3} d x \\
& \Rightarrow \quad I=(1 / 3) x^{3} \ln x-(1 / 3) \int x^{2} d x \\
& \Rightarrow \quad I=(1 / 3) x^{3} \ln x-(1 / 9) x^{3}+C
\end{aligned}
$$

Example 3

Integrate $x e^{2 x}$.
Let $I=\int x e^{u x} d x$.
$\frac{d}{d x}\left|\begin{array}{rl}u & =x, \quad v=e^{2 x} / 2 \\ u^{\prime}=1, \quad v^{\prime}=e^{2 x}\end{array}\right| \int$
$I=u v-\int u^{\prime} v d x$
$\therefore \quad I=(1 / 2) \times e^{2 x}-(1 / 2) \int 1 \cdot e^{2 x} d x$
$\Rightarrow \quad I=(1 / 2) x e^{2 x}-(1 / 2) \int e^{2 x} d x$
$\Rightarrow \quad I=(1 / 2) \times e^{2 x}-(1 / 4) e^{2 x}+C$

Example 4 (Repeated Integration by Parts)
Integrate $x^{2} \cos x$.

$$
\text { Let } I=\int x^{u} \cos x d x
$$

$$
\frac{d}{d x}\left|\begin{array}{cc}
u=x^{2}, & v=\sin x \\
u^{\prime}=2 x, & v^{\prime}=\cos x
\end{array}\right| \int
$$

$$
I=u v-\int u^{\prime} v d x
$$

$$
\therefore \quad I=x^{2} \sin x-2 \int x \sin x d x
$$

$$
\text { Let } J=\int x \sin ^{v^{\prime}} x d x
$$

$$
\frac{d}{d x}\left|\begin{array}{rl}
U=x, & V=-\cos x \\
U^{\prime}=1, \quad V^{\prime}=\sin x
\end{array}\right| \int
$$

$$
J=U V-\int U^{\prime} V d x
$$

$$
\therefore \quad J=-x \cos x+\int \cos x d x
$$

$$
\Rightarrow \quad J=-x \cos x+\sin x
$$

$$
I=x^{2} \sin x-2 J
$$

$\therefore \quad I=x^{2} \sin x-2(-x \cos x+\sin x)+C$
$\Rightarrow \quad I=x^{2} \sin x+2 x \cos x-2 \sin x+C$

Example 5 (Cyclic Integral)
Integrate $e^{-x} \cos x$.
Let $I=\int e^{v^{\prime}} \cos ^{u} x d x$.

$$
\left.\frac{d}{d x} \quad \begin{array}{cc}
u=\cos x, & v=-e^{-x} \\
u^{\prime}=-\sin x, & v^{\prime}=e^{-x}
\end{array} \right\rvert\, \int
$$

$$
I=u v-\int u^{\prime} v d x
$$

$\therefore \quad I=-e^{-x} \cos x-\int e^{-x} \sin x d x$
Let $J=\int e^{v^{\prime}} \frac{u}{u} \sin x d x$.

$\frac{d}{d x}$| $U=\sin x$, |
| :---: |
| $U^{\prime}=\cos x$, |$\quad V^{\prime}=-e^{-x}=\int$

$J=U V-\int U^{\prime} V d x$
$\therefore \quad J=-e^{-x} \sin x+\int e^{-x} \cos x d x$
$\Rightarrow \quad \mathrm{J}=-e^{-x} \sin x+\mathrm{I}$
$I=-e^{-x} \cos x-J$
$\therefore \quad I=-e^{-x} \cos x-\left(-e^{-x} \sin x+I\right)$
$\Rightarrow \quad I=-e^{-x} \cos x+e^{-x} \sin x-I$
$\Rightarrow 2 I=-e^{-x} \cos x+e^{-x} \sin x$
$\Rightarrow \quad I=(1 / 2) e^{-x}(\sin x-\cos x)+C$

Example 6 (The Hidden Function)

Find the exact value of $\int_{0}^{1} \sin ^{-1} x d x$.
Always integrate the 1
Let $I=\int_{0}^{1} \sin ^{-1} x d x=\int_{0}^{1} 1 \cdot \sin ^{-1} x d x$.

$$
\frac{d}{d x}\left|\begin{array}{cc}
u=\sin ^{-1} x & v=x \\
u^{\prime}=\frac{1}{\sqrt{1-v^{2}}} & \quad v^{\prime}=1
\end{array}\right| \int
$$

$$
I=[u v]_{a}^{b}-\int_{a}^{b} u^{\prime} v d x
$$

$$
\therefore \quad I=\left[x \sin ^{-1} x\right]_{0}^{1}-\int_{0}^{1} \frac{x}{\sqrt{1-x^{2}}} d x
$$

The substitution $w=1-x^{2}$ is used to evaluate the integral on the RHS. This gives, remembering to change the limits of integration to w-values,

$$
\begin{aligned}
& I=\left[x \sin ^{-1} x\right]_{0}^{1}+(1 / 2) \int_{1}^{0} w^{-1 / 2} d w \\
\Rightarrow \quad & I=\left[x \sin ^{-1} x\right]_{0}^{1}+\left[w^{1 / 2}\right]_{1}^{0} \\
\Rightarrow \quad & I=\left(1 \cdot \sin ^{-1} 1-0 . \sin ^{-1} 0\right)+(0-1) \\
\Rightarrow \quad & I=\pi / 2-1
\end{aligned}
$$

AH Maths - MiA (2 ${ }^{\text {nd }}$ Edn.)

- pg. 116 Ex. 7.8 Q 1 a, b, d, k,
$2 d, g, 4 a, b, 5 a, d, 6 a, b, d$.
- pg. 118 Ex. 7.9 Q $1 a, e, 2 a, j$.

Ex. 7.8

1 Integrate each function using integration by parts.
a $x \sin x \quad$ b $x e^{x} \quad$ d $3 x \sec ^{2} x \quad$ k $\quad \sqrt{x} \ln x$

2 Find these integrals, using integration by parts.

$$
\begin{aligned}
& \text { d } \int(1-4 x) \sin (2 x-3) d x \\
& \text { g } \int(2 x+1) e^{4-x} \mathrm{~d} x
\end{aligned}
$$

4 Integrate by parts

$$
\text { a } x \tan ^{-1} x \quad \text { b } x \sin ^{-1} x
$$

5 Integrate by parts
a $x^{2} \sin x$
d $(x+1)^{2} e^{x}$

6 Evaluate these definite integrals.
a $\int_{0}^{\pi} x \sin x \mathrm{~d} x$
b $\int_{0}^{e} x e^{3 x} \mathrm{~d} x$
d $\int_{0}^{\frac{\pi}{2}} x^{2} \sin 2 x d x$

Ex. 7.9

1

$$
\text { a } \int \ln 3 x \mathrm{~d} x \quad \text { e } \int \tan ^{-1} x \mathrm{~d} x
$$

2

$$
\text { a } \int e^{x} \sin x \mathrm{~d} x \quad \text { j } \int \frac{\cos 2 x}{e^{x}} \mathrm{~d} x
$$

Answers to AH Maths (MiA), pg. 116, Ex. 7.8
1 a $-x \cos x+\sin x+c$ b $x e^{x}-e^{x}+c$ d $3 x \tan x+3 \ln |\cos x|+c$
k $\frac{2}{3} x^{\frac{3}{2}} \ln x-\frac{4}{9} x^{\frac{3}{2}}+c$
$2 \mathrm{~d} \quad-\frac{1}{2}(1-4 x) \cos (2 x-3)-\sin (2 x-3)+c$
g $\quad-(2 x+1) e^{4-x}-2 e^{4-x}+c$
4 a $\frac{1}{2} x^{2} \tan ^{-1} x-\frac{1}{2} x+\frac{1}{2} \tan ^{-1} x+c$
b $\frac{1}{4}\left(2 x^{2}-1\right) \sin ^{-1} x+\frac{1}{4} x \sqrt{1-x^{2}}+c$
5 a $\left(2-x^{2}\right) \cos x+2 x \sin x+c$
d $e^{x}\left(x^{2}+1\right)+c$
6 a π
b $\quad \frac{1}{3} e^{3 e+1}-\frac{1}{9} e^{3 e}+\frac{1}{9}$
d $\frac{\pi^{2}}{8}-\frac{1}{2}$

Answers to AH Maths (MiA), pg. 118, Ex. 7.9
1 a $x \ln 3 x-x+c$
e $\quad x \tan ^{-1} x-\frac{1}{2} \ln \left(1+x^{2}\right)+c$
2 a $\frac{e^{x}}{2}(\sin x-\cos x)+c$
j $\quad \frac{e^{-x}}{5}(2 \sin 2 x-\cos 2 x)+c$

