Graph Sketching

LI
- Sketch graphs of polynomials, especially cubics and quartics.

SC
- SPs.
- Intersections with axes.
- Behaviour as $x \rightarrow \pm \infty$.
To sketch the graph of a polynomial (indicating stationary points), find:

- **x-intercepts** (put \(y = 0 \) then synthetic division to get roots).
- **y-intercept** (put \(x = 0 \)).
- **SPs and their nature.**
- **Behaviour as** \(x \to \pm \infty \).
Example 1

Sketch the graph of the function
\[f(x) = x^3 + 2x^2 + x, \] annotating it fully.

'Annotating it fully' means indicating intersections with axes and indicating SPs.

\[f(x) = x^3 + 2x^2 + x \]
\[\Rightarrow f(x) = x(x^2 + 2x + 1) \]
\[\Rightarrow f(x) = x(x + 1)^2 \]

- **x-intercepts:**
 \[f(x) = 0 \]
 \[\Rightarrow x(x + 1)^2 = 0 \]
 \[\Rightarrow x = 0, x = -1 \]
 \[\therefore (0, 0), (0, -1) \]

- **y-intercept:**
 \[f(x) = x^3 + 2x^2 + x \]
 \[\therefore f(0) = (0)^3 + 2(0)^2 + 0 \]
 \[\Rightarrow f(0) = 0 \]
 \[\therefore (0, 0) \]

- **SPs:**
 \[f'(x) = 0 \]
 \[\therefore 3x^2 + 4x + 1 = 0 \]
 \[\Rightarrow (3x + 1)(x + 1) = 0 \]
 \[\Rightarrow x = -\frac{1}{3}, x = -1 \]
\[x = -1: \]
\[f(x) = x^3 + 2x^2 + x \]
\[\therefore f(-1) = (-1)^3 + 2(-1)^2 + (-1) \]
\[\Rightarrow f(-1) = -1 + 2 - 1 \]
\[\Rightarrow f(-1) = 0 \]
\[\therefore (-1, 0) \]

\[x = -\frac{1}{3}: \]
\[f(x) = x^3 + 2x^2 + x \]
\[\therefore f\left(-\frac{1}{3}\right) = \left(-\frac{1}{3}\right)^3 + 2\left(-\frac{1}{3}\right)^2 + \left(-\frac{1}{3}\right) \]
\[\Rightarrow f\left(-\frac{1}{3}\right) = -\frac{1}{27} + \frac{2}{9} - \frac{1}{3} \]
\[\Rightarrow f\left(-\frac{1}{3}\right) = -\frac{4}{27} \]
\[\therefore \left(-\frac{1}{3}, -\frac{4}{27}\right) \]
\[
\begin{array}{|c|c|c|c|c|}
\hline
x & -2 & -1 & -\frac{1}{2} & -\frac{1}{3} & 0 \\
\hline
f'(x) & + & 0 & - & 0 & + \\
\hline
\text{Slope} & \diagup & \hspace{1cm} & \diagdown & \hspace{1cm} & \diagup \\
\hline
\end{array}
\]

\[
f'(x) = (3x + 1)(x + 1)
\]

\[
\therefore f'(-2) = (-5)(-1)
\]

\[
\Rightarrow f'(-2) = 5 > 0
\]

\[
f'(x) = (3x + 1)(x + 1)
\]

\[
\therefore f'\left(-\frac{1}{2}\right) = \left(-\frac{1}{2}\right)\left(\frac{1}{2}\right)
\]

\[
\Rightarrow f'\left(-\frac{1}{2}\right) = -\frac{1}{4} < 0
\]

\[
f'(x) = (3x + 1)(x + 1)
\]

\[
\therefore f'(0) = (1)(1)
\]

\[
\Rightarrow f'(0) = 1 > 0
\]

\[
(-1, 0) \text{ is a local max. and } \left(-\frac{1}{3}, -\frac{4}{27}\right) \text{ is a local min.}
\]
• Behaviour as $x \to \pm \infty$:

For large values of x (positive or negative), the x^3 term is dominant, so that,

$$y = f(x) \approx x^3$$

As $x \to +\infty$ (i.e. for large and positive x),

$$f(x) \to +\infty$$ (i.e. y is large and positive).

Positive x (positive)3 = positive

As $x \to -\infty$ (i.e. for large and negative x),

$$f(x) \to -\infty$$ (i.e. y is large and negative).

Positive x (negative)3 = negative

$$y = x^3 + 2x^2 + x$$

$(-\frac{1}{3}, -\frac{4}{27})$
Example 2

Example 3
Example 2

Sketch the graph of the function

\[f(x) = -x^3 - 3x^2 + 9x + 2. \]

By inspection:

\[
\begin{array}{cccc}
 x^3 & x^2 & x^1 & x^0 \\
 2 & -1 & -3 & 9 & 2 \\
\end{array}
\]

\[
\begin{array}{cccc}
 & -2 & -10 & -2 \\
\end{array}
\]

\[
\begin{array}{cccc}
 -1 & -5 & -1 & 0 \\
\end{array}
\]

⇒ \[f(x) = (x - 2)(-x^2 - 5x - 1) \]

⇒ \[f(x) = -(x - 2)(x^2 + 5x + 1) \]

x-intercepts:

\[f(x) = 0 \]

⇒ \(-(x - 2)(x^2 + 5x + 1) = 0 \)

⇒ \[x = 2, x = \frac{-5 \pm \sqrt{21}}{2} \]

\[\therefore (2, 0), \left(\frac{-5 \pm \sqrt{21}}{2}, 0\right) \]

y-intercept:

\[f(x) = -x^3 - 3x^2 + 9x + 2 \]

\[\therefore f(0) = -(0)^3 - 3(0)^2 + 9(0) + 2 \]

⇒ \[f(0) = 2 \]

\[\therefore (0, 2) \]

SPs:

\[f'(x) = 0 \]

\[-3x^2 - 6x + 9 = 0 \]

⇒ \[-3(x^2 + 2x - 3) = 0 \]

⇒ \[-3(x + 3)(x - 1) = 0 \]

⇒ \[x = -3, x = 1 \]
\[x = -3: \]
\[f(x) = -x^3 - 3x^2 + 9x + 2 \]
\[\therefore f(-3) = -(-3)^3 - 3(-3)^2 + 9(-3) + 2 \]
\[\Rightarrow f(-3) = 27 - 27 - 27 + 2 \]
\[\Rightarrow f(-3) = -25 \]
\[: (\ -3, \ -25) \]

\[x = 1: \]
\[f(x) = -x^3 - 3x^2 + 9x + 2 \]
\[\therefore f(1) = -(1)^3 - 3(1)^2 + 9(1) + 2 \]
\[\Rightarrow f(1) = -1 - 3 + 9 + 2 \]
\[\Rightarrow f(1) = 7 \]
\[: (1, 7) \]
\[
\begin{array}{|c|c|c|c|c|}
\hline
x & -4 & -3 & 0 & 1 & 2 \\
\hline
f'(x) & - & 0 & + & 0 & - \\
\hline
\text{Slope} & \diagdown & \text{---} & \diagup & \text{---} & \diagdown \\
\hline
\end{array}
\]

\[
f'(x) = -3(x + 3)(x - 1)
\]

\[
\therefore f'(-4) = -3(-1)(-5)
\]

\[
\Rightarrow f'(-4) = -15 < 0
\]

\[
f'(x) = -3(x + 3)(x - 1)
\]

\[
\therefore f'(0) = -3(3)(-1)
\]

\[
\Rightarrow f'(0) = 9 > 0
\]

\[
f'(x) = -3(x + 3)(x - 1)
\]

\[
\therefore f'(2) = -3(5)(1)
\]

\[
\Rightarrow f'(2) = -15 < 0
\]

(-3, 25) is a local min. and (1, 7) is a local min.
• Behaviour as $x \to \pm \infty$:

For large values of x (positive or negative), the x^3 term is dominant, so that,

$$y = f(x) \approx -x^3$$

As $x \to +\infty$ (i.e. for large and positive x),

$f(x) \to -\infty$ (i.e. y is large and negative).

As $x \to -\infty$ (i.e. for large and negative x),

$f(x) \to +\infty$ (i.e. y is large and positive).

$y = -x^3 - 3x^2 + 9x + 2$
Example 3

Sketch the graph of the function
\[f(x) = 2x^4 - 8x^3. \]

\[f(x) = 2x^4 - 8x^3 \]
\[\Rightarrow f(x) = 2x^3(x - 4) \]

* x-intercepts:

\[f(x) = 0 \]
\[\Rightarrow 2x^3(x - 4) = 0 \]
\[\Rightarrow x = 0, x = 4 \]
\[\therefore (0, 0), (0, 4) \]

* y-intercept:

\[f(x) = 2x^4 - 8x^3 \]
\[\therefore f(0) = 2(0)^4 - 8(0)^3 \]
\[\Rightarrow f(0) = 0 \]
\[\therefore (0, 0) \]

* SPs:

\[f'(x) = 0 \]
\[\therefore 8x^3 - 24x^2 = 0 \]
\[\Rightarrow 8x^2(x - 3) = 0 \]
\[\Rightarrow x = 0, x = 3 \]

\[x = 0: \]
\[f(x) = 2x^4 - 8x^3 \]
\[\therefore f(0) = 2(0)^4 - 8(0)^3 \]
\[\Rightarrow f(0) = 0 \]
\[\therefore (0, 0) \]

\[x = 3: \]
\[f(x) = 2x^4 - 8x^3 \]
\[\therefore f(3) = 2(3)^4 - 8(3)^3 \]
\[\Rightarrow f(3) = -54 \]
\[\therefore (3, -54) \]
\[
f'(x) = 8x^2(x - 3)
\]
\[
\therefore f'(-1) = 8(-4)
\]
\[
\Rightarrow f'(-1) = -32 < 0
\]

\[
f'(x) = 8x^2(x - 3)
\]
\[
\therefore f'(1) = 8(-2)
\]
\[
\Rightarrow f'(1) = -16 < 0
\]

\[
f'(x) = 8x^2(x - 3)
\]
\[
\therefore f'(4) = 128(1)
\]
\[
\Rightarrow f'(4) = 128 > 0
\]

$(0, 0)$ is a P of I and $(3, -54)$ is a local min.
• Behaviour as $x \to \pm \infty$:

For large values of x (positive or negative), the x^4 term is dominant, so that,

$$y = f(x) \approx x^4$$

As $x \to +\infty$ (i.e. for large and positive x),
$$f(x) \to +\infty$$ (i.e. y is large and negative).

As $x \to -\infty$ (i.e. for large and negative x),
$$f(x) \to +\infty$$ (i.e. y is large and positive).

$y = 2x^4 - 8x^3$

(0, 0)

(3, -54)
CfE Higher Maths

pg. 262 - 263 Ex. 10D All Q