

To sketch the graph of a polynomial (indicating stationary points), find :

- x intercepts (put y = 0 then synthetic division to get roots).
- y intercept (put x = 0).
- SPs and their nature.
- Behaviour as $x \longrightarrow \pm \infty$.

$$\frac{x = -1:}{f(x) = x^{3} + 2x^{2} + x}$$

$$\therefore \quad f(-1) = (-1)^{3} + 2(-1)^{2} + (-1)$$

$$\Rightarrow \quad f(-1) = -1 + 2 - 1$$

$$\Rightarrow \quad \frac{f(-1) = 0}{(-1)^{3} + 2x^{2} + x}$$

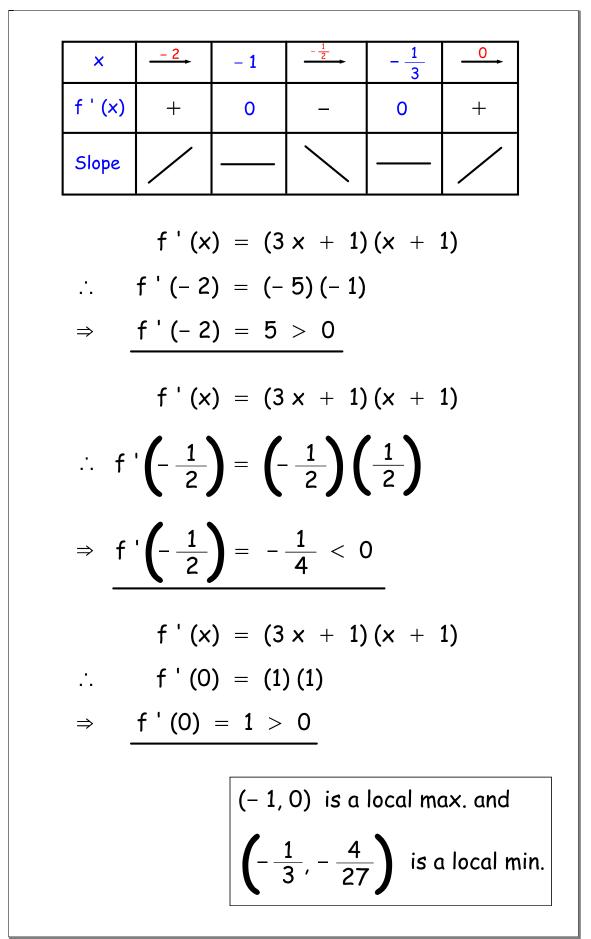
$$\therefore \quad f(x) = x^{3} + 2x^{2} + x$$

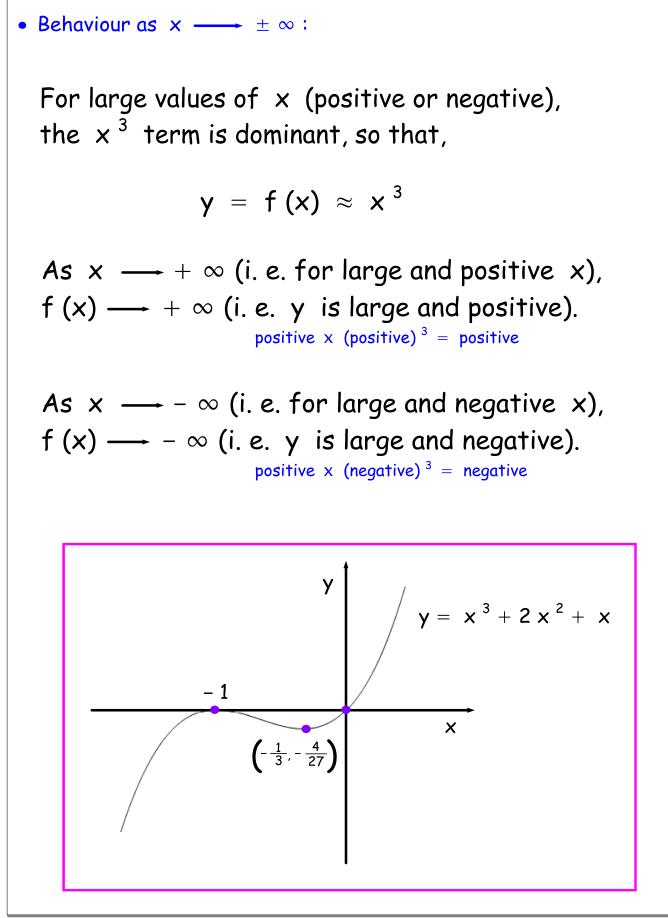
$$\therefore \quad f(-\frac{1}{3}) = (-\frac{1}{3})^{3} + 2(-\frac{1}{3})^{2} + (-\frac{1}{3})^{3}$$

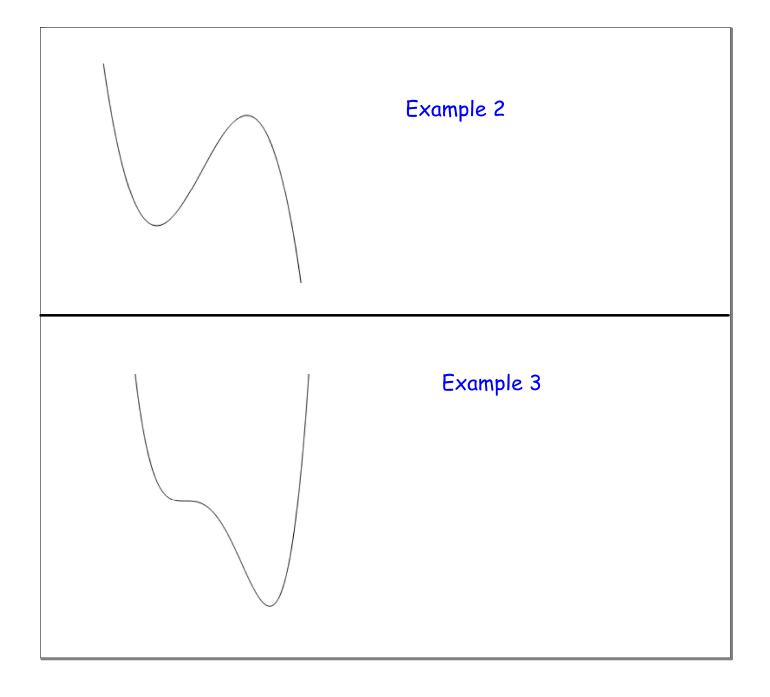
$$\Rightarrow \quad f(-\frac{1}{3}) = -\frac{1}{27} + \frac{2}{9} - \frac{1}{3}$$

$$\Rightarrow \quad \frac{f(-\frac{1}{3}) = -\frac{4}{27}}{(-\frac{1}{3})^{3} - \frac{4}{27}}$$

$$\therefore \quad (-\frac{1}{3}, -\frac{4}{27})$$







Example 2

Example 2
Sketch the graph of the function $f(x) = -x^{3} - 3x^{2} + 9x + 2.$
$\begin{vmatrix} x^{3} & x^{2} & x^{1} & x^{0} \\ 2 & -1 & -3 & 9 & 2 \end{vmatrix}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\therefore f(x) = (x - 2)(-x^{2} - 5x - 1)$
$\Rightarrow f(x) = -(x - 2)(x^{2} + 5x + 1)$
• x - intercepts :
f(x) = 0
$\Rightarrow -(x - 2)(x^{2} + 5x + 1) = 0$
$\Rightarrow x = 2, x = \frac{-5 \pm \sqrt{21}}{2}$
$\therefore \left((2,0), \left(\frac{-5 \pm \sqrt{21}}{2}, 0 \right) \right)$
• y - intercept :
$f(x) = -x^{3} - 3x^{2} + 9x + 2$
$\therefore \qquad f(0) = -(0)^3 - 3(0)^2 + 9(0) + 2$
\Rightarrow f(0) = 2
• SPs :
f'(x) = 0
$\therefore -3x^2 - 6x + 9 = 0$
$\Rightarrow -3(x^{2} + 2x - 3) = 0$
$\Rightarrow -3(x + 3)(x - 1) = 0$
$\Rightarrow \qquad x = -3, x = 1$

Mar 1-14:16

$$\frac{x = -3:}{f(x) = -x^{3} - 3x^{2} + 9x + 2}$$

$$\therefore \quad f(-3) = -(-3)^{3} - 3(-3)^{2} + 9(-3) + 2$$

$$\Rightarrow \quad f(-3) = 27 - 27 - 27 + 2$$

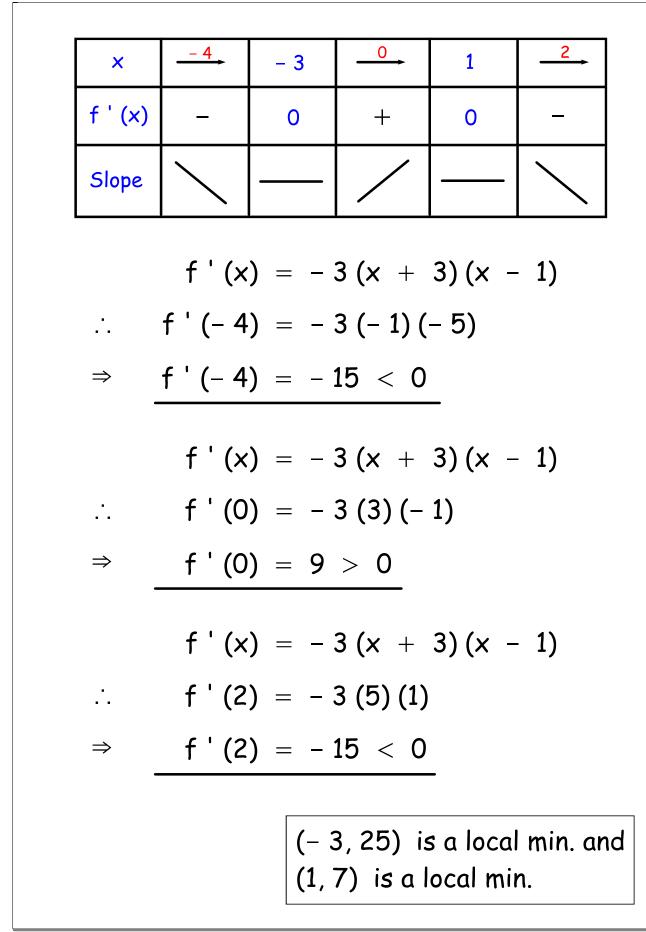
$$\Rightarrow \quad \frac{f(-3) = -25}{(-3, -25)}$$

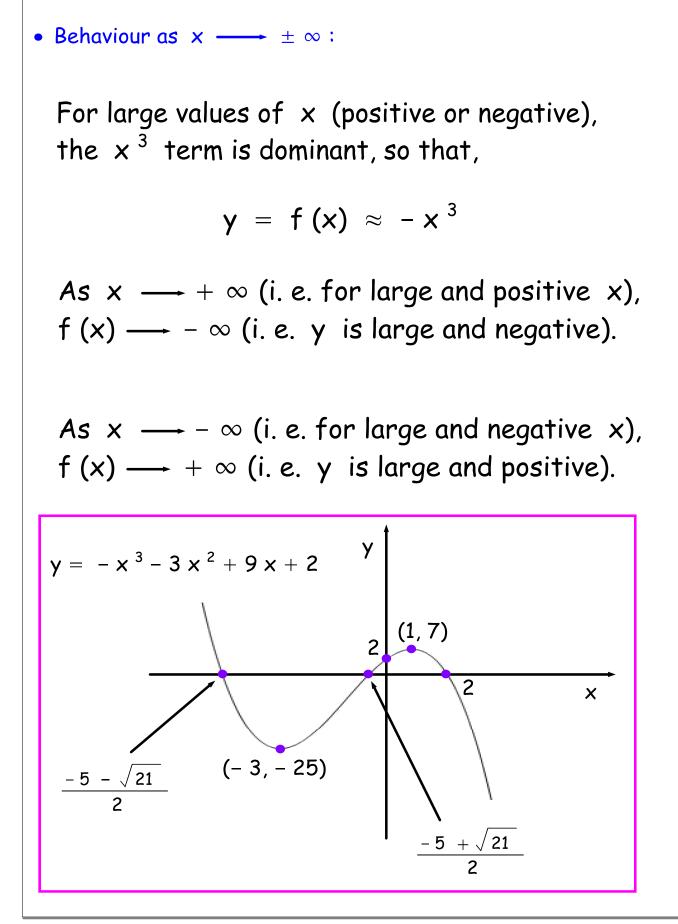
$$\frac{x = 1:}{f(x) = -x^{3} - 3x^{2} + 9x + 2}$$

$$\therefore \quad f(1) = -(1)^{3} - 3(1)^{2} + 9(1) + 2$$

$$\Rightarrow \quad f(1) = -1 - 3 + 9 + 2$$

$$\Rightarrow \quad \frac{f(1) = 7}{(1, 7)}$$





Example 3 Sketch the graph of the function $f(x) = 2x^4 - 8x^3$. $f(x) = 2x^4 - 8x^3$ $\Rightarrow f(x) = 2 x^{3} (x - 4)$ • x - intercepts : f(x) = 0 $\Rightarrow 2 x^{3} (x - 4) = 0$ $\Rightarrow \qquad x = 0, x = 4$.: (0, 0), (0, 4) • y - intercept : $f(x) = 2x^4 - 8x^3$ \therefore f (0) = 2 (0)⁴ - 8 (0)³ f(0) = 0⇒ ... (0, 0) • SPs : f'(x) = 0 $8 x^{3} - 24 x^{2} = 0$ $8 x^{2} (x - 3) = 0$ ⇒ x = 0, x = 3 \Rightarrow x = 0: $f(x) = 2x^4 - 8x^3$ \therefore f (0) = 2 (0)⁴ - 8 (0)³ f(0) = 0⇒ ... (0, 0) x = 3: $f(x) = 2x^4 - 8x^3$ \therefore f (3) = 2 (3)⁴ - 8 (3)³ f(3) = -54⇒ ∴ (3, – 54)

