8 / 11 / 17

Unit 2 : Sequences and Series - Lesson 4

Finite Geometric Series

LI

- Know what a Finite Geometric Series is.
- \bullet Find the $\,n^{\text{th}}\,$ term formula for a finite geometric series.
- Solve problems involving finite geometric series.

<u>SC</u>

• Arithmetic of real numbers.

A finite series is obtained by adding finitely many terms of a sequence

A finite geometric series (up to n terms) is obtained by adding the first n terms of a geometric sequence

The sum to n terms of a geometric sequence is:

$$S_n = \frac{a(1 - r^n)}{1 - r} (r \neq 1)$$

Example 1

Find, to 4 s.f., the sum to eight terms of the geometric sequence that starts $5, 6, 36/5, \ldots$

We have a = 5 and r = 6/5.

$$S_n = \frac{\alpha (1 - r^n)}{1 - r}$$

$$\therefore S_8 = \frac{5(1 - (6/5)^8)}{1 - (6/5)}$$

$$\Rightarrow$$
 $S_8 = 82.495...$

$$S_8 = 82.50 \text{ (4 s.f.)}$$

Example 2

A geometric sequence begins 4, 6, 9, . . .

Find the smallest value of n for which $S_n > 200$.

We have a = 4 and $r = 6/4 \Rightarrow r = 3/2$.

$$S_n = \frac{a(1 - r^n)}{1 - r}$$

$$S_n = \frac{4(1 - (3/2)^n)}{1 - (3/2)}$$

$$\Rightarrow \qquad S_n = 8 ((3/2)^n - 1)$$

$$S_n > 200$$

$$\therefore$$
 8 ((3/2)ⁿ - 1) > 200

$$\Rightarrow (3/2)^{n} - 1 > 25$$

$$\Rightarrow$$
 $(3/2)^n > 26$

$$\therefore$$
 n ln (3/2) > ln 26

$$\Rightarrow \qquad \qquad n > (\ln 26)/(\ln (3/2))$$

$$\Rightarrow$$
 n > 8.035...

Example 3

Show that the geometric sequence that starts 12, 3, 3/4, ... has sum to n terms given by $S_n = 16 p(n)$, stating explicitly the function p(n).

If $S_n = 63/4$, find n.

We have a = 12 and $r = 3/12 \Rightarrow r = 1/4$.

$$S_n = \frac{a(1 - r^n)}{1 - r}$$

$$S_n = \frac{12(1 - (1/4)^n)}{1 - (1/4)}$$

$$\Rightarrow S_n = \frac{12 (1 - (1/4^n))}{3/4}$$

$$\Rightarrow S_n = 16 (1 - (1/4^n))$$

$$(p (n) = 1 - (1/4^n))$$

$$S_n = 63/4$$

$$\therefore$$
 16 (1 - (1/4°)) = 63/4

$$\Rightarrow 1 - (1/4^n) = 63/64$$

$$\Rightarrow$$
 1/4 $^{\circ}$ = 1/64

$$\Rightarrow$$
 4 $^{n} = 64$

$$\Rightarrow$$
 $n = 3$

AH Maths - MiA (2nd Edn.)

pg. 159-161 Ex. 9.4 Q 1, 2 a,
 b, 3, 4, 6,
 7, 9.

Ex. 9.4

1 Find the sum of each geometric sequence to the required number of terms.

a 3, 6, 12, ... to eight terms

b 5, 20, 80, ... to seven terms

c $4, -12, 36, \dots$ to 10 terms

d 3, 12, 48, ... to six terms

e 2, −4, 8, ... to 12 terms

f = -3, 6, -12, ... to 10 terms

2 Evaluate each geometric series to the number of specified terms.

a $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + ...$ to eight terms

b $1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots$ to nine terms

3 a How many terms of the series $8 + 24 + 72 + \dots$ must be added to get a sum of 26240?

b At which term does the sum $1.5 + 6 + 24 + \dots$ exceed one million?

4 A geometric series has a common ratio of 3. Its sum to eight terms is 39 360.

a Calculate the first term.

b Calculate the sum to six terms.

6 a The sum of the first three terms of a GP is 744. The sum of the next three is 93 000. Find the series.

b Find the sum of the seventh, eighth and ninth terms.

7 a, a-12, a+12 are the first three terms of a geometric sequence.

a What is the value of a?

b Calculate the sum of the first 10 terms.

9 When making a guitar, the spacings between the frets on the neck are mathematically fixed.

Each spacing is $\frac{17}{18}$ of the previous spacing.

a If the first spacing (between the nut and the first fret) is 4 cm, calculate the distance between the sixth and ninth frets.

b If the 12th fret is placed half way between the nut and the bridge, what is the distance between the nut and the bridge?

Answers to AH Maths (MiA), pg. 159-161, Ex. 9.4

b 27305

c -59048

e -2730 f 1023

2 a
$$\frac{255}{256}$$

b
$$\frac{171}{256}$$

b 11th

b 4368

6 a
$$a = 24, r = 5$$

b 11 625 000

b - 1364

a 8.05 cm

b 71.48 cm (2 dp)