8 / 11 / 17

Unit 2 : Sequences and Series - Lesson 4
Finite Geometric Series
LI

- Know what a Finite Geometric Series is.
- Find the $n^{\text {th }}$ term formula for a finite geometric series.
- Solve problems involving finite geometric series.

SC

- Arithmetic of real numbers.

A finite series is obtained by adding finitely many terms of a sequence

A finite geometric series (up to n terms) is obtained by adding the first n terms of a geometric sequence

The sum to n terms of a geometric sequence is:

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \quad(r \neq 1)
$$

Example 1

Find, to 4 s.f., the sum to eight terms of the geometric sequence that starts $5,6,36 / 5, \ldots$.

We have $a=5$ and $r=6 / 5$.

$$
\begin{aligned}
& S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \\
\therefore & S_{8}=\frac{5\left(1-(6 / 5)^{8}\right)}{1-(6 / 5)} \\
\Rightarrow & S_{8}=82.495 \ldots \\
\therefore & S_{8}=82.50(4 \text { s.f.) }
\end{aligned}
$$

Example 2

A geometric sequence begins $4,6,9, \ldots$.
Find the smallest value of n for which $S_{n}>200$.
We have $a=4$ and $r=6 / 4 \Rightarrow r=3 / 2$.

$$
\begin{array}{lc}
& S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \\
\therefore & S_{n}=\frac{4\left(1-(3 / 2)^{n}\right)}{1-(3 / 2)} \\
\Rightarrow & S_{n}=8\left((3 / 2)^{n}-1\right) \\
\therefore & 8\left((3 / 2)^{n}-1\right)>200 \\
\Rightarrow & (3 / 2)^{n}-1>25 \\
\Rightarrow & (3 / 2)^{n}>26 \\
\therefore & n \ln (3 / 2)>\ln 26 \\
\Rightarrow & n>(\ln 26) /(\ln (3 / 2)) \\
\Rightarrow & n>8.035 \ldots \\
\therefore & n=9
\end{array}
$$

Example 3

Show that the geometric sequence that starts $12,3,3 / 4, \ldots$ has sum to n terms given by $S_{n}=16 p(n)$, stating explicitly the function $p(n)$.

If $S_{n}=63 / 4$, find n.

We have $a=12$ and $r=3 / 12 \Rightarrow r=1 / 4$.

$$
\begin{aligned}
& S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \\
& \therefore \quad S_{n}=\frac{12\left(1-(1 / 4)^{n}\right)}{1-(1 / 4)} \\
& \Rightarrow \quad S_{n}=\frac{12\left(1-\left(1 / 4^{n}\right)\right)}{3 / 4} \\
& \Rightarrow \quad \begin{array}{l}
S_{n}=16\left(1-\left(1 / 4^{n}\right)\right) \\
\left(p(n)=1-\left(1 / 4^{n}\right)\right)
\end{array} \\
& S_{n}=63 / 4 \\
& \therefore \quad 16\left(1-\left(1 / 4^{n}\right)\right)=63 / 4 \\
& \Rightarrow \quad 1-\left(1 / 4^{n}\right)=63 / 64 \\
& \Rightarrow \quad 1 / 4^{n}=1 / 64 \\
& \Rightarrow \quad 4^{n}=64 \\
& \Rightarrow \quad n=3
\end{aligned}
$$

$$
\begin{gathered}
\text { AH Maths - MiA (2 }{ }^{\text {nd }} \text { Edn.) } \\
\text { - pg. 159-161 Ex. } 9.4 \text { Q } 1,2 \mathrm{a}, \\
\mathrm{~b}, 3,4,6, \\
7,9 .
\end{gathered}
$$

Ex. 9.4

1 Find the sum of each geometric sequence to the required number of terms.
a $3,6,12, \ldots$ to eight terms
b $5,20,80, \ldots$ to seven terms
c $4,-12,36, \ldots$ to 10 terms
d $3,12,48, \ldots$ to six terms
e $2,-4,8, \ldots$ to 12 terms
f $-3,6,-12, \ldots$ to 10 terms

2 Evaluate each geometric series to the number of specified terms.
a $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots$ to eight terms
b $1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\ldots$ to nine terms

3 a How many terms of the series $8+24+72+\ldots$ must be added to get a sum of 26240?
b At which term does the sum $1.5+6+24+\ldots$ exceed one million?
4 A geometric series has a common ratio of 3. Its sum to eight terms is 39360 .
a Calculate the first term.
b Calculate the sum to six terms.

6 a The sum of the first three terms of a GP is 744 . The sum of the next three is 93000 . Find the series. b Find the sum of the seventh, eighth and ninth terms.
$7 a, a-12, a+12$ are the first three terms of a geometric sequence.
a What is the value of a ?
b Calculate the sum of the first 10 terms.

9 When making a guitar, the spacings between the frets on the neck are mathematically fixed.
Each spacing is $\frac{17}{18}$ of the previous spacing.
a If the first spacing (between the nut and the first fret) is 4 cm , calculate the distance between the sixth and ninth frets.
b If the 12 th fret is placed half way between the nut and the bridge, what is the distance between the nut and the bridge?

> Answers to AH Maths (MiA), pg. 159-161, Ex. 9.4
> d 4095
> e -2730
> b $\frac{171}{256}$
> 3 a 8
> b 11th
> 4 a 12
> b 4368
> 6 a $a=24, r=5$
> 7 a 4
> 9 a 8.05 cm
> b $\quad 71.48 \mathrm{~cm}(2 \mathrm{dp})$

