Differential Calculus - Lesson 4

Equations of Tangent Lines

LI

- Find equations of tangent lines to curves.

SC

- Differentiation.
- Straight line equation.

To find the equation of a tangent line to a curve $y=f(x)$ at $x=p$:

- Differentiate the function $y=f(x)$.
- Work out this derivative at $x=p$; this gives m, the gradient of the tangent line at $x=p$.
- Get the y-coordinate by substituting $x=p$ into $y=f(x)$.
- Use $y-b=m(x-a)(a=p$ and $b=f(p))$ to get the tangent line equation.

Example 1
Find the equation of the tangent to the curve
$y=x^{2}-3 x+5$ at the point $(1,3)$.

$$
\begin{array}{rlrl}
& & y(x)=x^{2}-3 x+5 \\
\therefore & y^{\prime}(x)=2 x-3 \\
\therefore & y^{\prime}(1)=2(1)-3 \\
\Rightarrow & & y^{\prime}(1)=-1 \\
& & y(x)=x^{2}-3 x+5 \\
\therefore & & y(1)=(1)^{2}-3(1)+5 \\
\Rightarrow & & y(1)=1-3+5 \\
\Rightarrow & & y(1)=3 \\
\therefore & & y-3=-1(x-1) \\
\Rightarrow & & y-3=-x+1 \\
\Rightarrow & & y=-x+4
\end{array}
$$

Example 2
At point Q, the tangent to $y=x^{2}-3 x+4$ has gradient 7.

Find the equation of the tangent at Q.

$$
\begin{aligned}
y(x) & =x^{2}-3 x+4 \\
\therefore \quad y^{\prime}(x) & =2 x-3
\end{aligned}
$$

But $y^{\prime}(x)=7$. So,

$$
\begin{array}{rlrl}
& & 2 x-3 & =7 \\
\Rightarrow & x & =5 \\
\hline
\end{array}
$$

$$
y(x)=x^{2}-3 x+4
$$

$$
\therefore \quad y(5)=(5)^{2}-3(5)+4
$$

$$
\Rightarrow \quad y(5)=25-15+4
$$

$$
\Rightarrow \quad y(5)=14
$$

$$
\begin{array}{rlrl}
& & y-b & =m(x-a) \\
& \therefore & y-14 & =7(x-5) \\
& \Rightarrow & y-14 & =7 x-35 \\
\Rightarrow & y & y x-21
\end{array}
$$

$$
\begin{gathered}
m=7 \\
(a, b) \\
514
\end{gathered}
$$

Example 3
If the gradient of the tangent to the curve $y=k x^{2}+x-5$ at $x=1$ is 5 , find k and find the equation of the tangent to the curve at $x=1$.

$$
\begin{aligned}
y(x) & =k x^{2}+x-5 \\
\therefore \quad y^{\prime}(x) & =2 k x+1
\end{aligned}
$$

At $x=1, y^{\prime}(x)=5$. So,
$2 k(1)+1=5$
$\Rightarrow \quad \mathrm{k}=2$

$$
\begin{array}{ll}
& y(x)=2 x^{2}+x-5 \\
\therefore & y(1)=2(1)^{2}+(1)-5 \\
\Rightarrow & y(1)=2+1-5 \\
\Rightarrow & y(1)=-2
\end{array}
$$

$$
y-b=m(x-a)
$$

$$
\therefore \quad y-(-2)=5(x-1)
$$

$$
\Rightarrow \quad y+2=5 x-5
$$

$$
\Rightarrow \quad y=5 x-7
$$

CfE Higher Maths

pg. 240-243 Ex. 10A
Q 1, 3 a, b, 5 a, c, 6, 12

Questions

1 For each of these functions, find the equation of the tangent at the given point.
a $y=x^{2}+3 x+6 ;(1,10)$
b $y=x^{2}-6 x+4 ;(3,-5)$
c $y=2 x^{2}+3 x-5 ;(-1,-6)$
d $y=x^{3}+3 x^{2}-2 x+4 ;(2,20)$
e $y=x^{3}-2 x ;(-3,-21)$
f $y=4-3 x-x^{2}(2,-6)$

3 For each of these functions, find the equation of the tangent at the given point
a $y=x^{2}+5 x+1 ; x=1$
b $y=x^{2}-x+6 ; x=3$

5 a A curve has equation $y=x^{2}+4 x-6$. At P, the gradient of the curve is -6 . Find the equation of the tangent to the curve at P.
c A curve has equation $y=5 x^{2}-x+3$. At R, the tangent to the curve has gradient $=-6$. Find the equation of the curve at R.

6 For each of these functions, find the equation of the tangent at the given point. You will need to express each function in differentiable form first.
a $y=(x-2)(x+5) ; x=4$
b $y=2 x^{2}(x-3) ; x=-1$
c $y=(x-2)\left(x^{2}+x-1\right) ; x=1$
d $y=x(x+2)^{2} ; x=-2$
e $y=\frac{4 x-1}{x} ; x=2$
f $y=4 \sqrt{x} ; x=36$

12 An old road can be represented by the curve with equation $x^{3}-2 x^{2}+6 x+7$ as shown in the diagram.
A new road is represented by the dashed line. The line is a tangent to the curve at the point P, where $x=2$.
Find the equation of the dashed line.

Answers

$$
\begin{array}{rlrl}
\mathbf{1} & \mathbf{a} & y & =5 x+5 \\
& \mathbf{b} & y & =-5 \\
& \mathbf{c} & y & =-x-7 \\
\mathbf{d} & y & =22 x-24 \\
& \mathbf{e} & y & =25 x+54 \\
& \mathbf{f} & y & =-7 x+8 \\
3 & \mathbf{a} & y & =7 x \\
& \text { b } & y & =5 x-3
\end{array}
$$

