21 / 6 / 17

Unit 1: Differential Calculus - Lesson 4

Derivatives of Exponential and Logarithmic Functions

LI

• Know the derivatives of e^{x} and $\ln x$.

<u>SC</u>

• Memorise Rules.

Derivatives of Exponential and Logarithmic Functions

•
$$\frac{d}{dx} e^x = e^x$$

•
$$\frac{d}{dx} e^x = e^x$$

• $\frac{d}{dx} \ln x = \frac{1}{x}$

General Form of Derivatives - Chain Rule

$$\frac{d}{dx} e^{f(x)} = e^{f(x)} \cdot f'(x)$$

$$\frac{d}{dx} \ln f(x) = \frac{1}{f(x)} \cdot f'(x)$$

If
$$g(x) = e^{x/4}$$
, find $g'(x)$.

$$q(x) = e^{x/4}$$

$$g(x) = e^{x/4}$$

$$g'(x) = e^{x/4} \cdot \frac{d}{dx} (x/4)$$

$$g'(x) = (1/4) e^{x/4}$$

$$\Rightarrow$$
 g'(x) = (1/4) e^{x/4}

If
$$f(x) = \exp(6x)$$
, find $f'(x)$.

$$f(x) = \exp(6x)$$

$$f(x) = e^{6x}$$

$$\therefore f'(x) = e^{6x} \cdot \frac{d}{dx}(6x)$$

$$\Rightarrow f'(x) = 6e^{6x}$$

$$\left(f'(x) = 6\exp(6x)\right)$$

If
$$r(w) = \ln(w^2 + 11 w)$$
, find $r'(w)$.

$$r(w) = ln(w^2 + 11 w)$$

$$r'(w) = \frac{1}{w^2 + 11 w} \cdot \frac{d}{dw} (w^2 + 11 w)$$

$$\Rightarrow r'(w) = \frac{2w + 11}{w^2 + 11w}$$

If $y = \ln(\cot x)$, find y', expressing the answer in terms of $\sin x$ and $\cos x$ only.

$$y = \ln(\cot x)$$

$$\therefore y' = \frac{1}{\cot x} \cdot \frac{d}{dx} (\cot x)$$

$$\Rightarrow$$
 $y' = -\frac{\cos e^2 x}{\cot x}$

$$\Rightarrow y' = -\frac{1}{\sin^2 x} \div \frac{\cos x}{\sin x}$$

$$\Rightarrow y' = -\frac{1}{\sin^2 x} \times \frac{\sin x}{\cos x}$$

$$\Rightarrow \qquad y' = - \frac{1}{\sin x \cos x}$$

If
$$y = \cot(\ln x)$$
, find y'.

$$y = \cot(\ln x)$$

$$y' = - \operatorname{cosec}^{2} (\ln x) \cdot \frac{d}{dx} (\ln x)$$

$$\Rightarrow$$
 y' = -cosec² (ln x). (1/x)

$$\Rightarrow y' = -\frac{\operatorname{cosec}^{2}(\ln x)}{x}$$

If
$$y = e^{\sin x}$$
, find y'.

$$y = e^{\sin x}$$

$$\therefore y' = e^{\sin x} \cdot \frac{d}{dx} (\sin x)$$

$$\Rightarrow$$
 $y' = \cos x e^{\sin x}$

If
$$y = \ln(\sec(x^3))$$
, find y'.

$$y = \ln(\sec(x^3))$$

$$\therefore y' = \frac{1}{\sec(x^3)} \cdot \frac{d}{dx} (\sec(x^3))$$

$$\Rightarrow$$
 y' = $\frac{1}{\sec(x^3)}$. sec (x³) . tan (x³) . 3 x²

$$\Rightarrow$$
 $y' = 3 x^2 \tan(x^3)$

AH Maths - MiA (2nd Edn.)

• pg. 58-9 Ex. 4.9 Q 1 - 5.

Ex. 4.9

1 Find the derivative of each of these.

$$e^{4x}$$

b
$$e^{4x+1}$$

$$c e^{x^2}$$

$$d e^{1-x^2}$$

$$f 2e^{3x+4}$$

$$g 3e^{\frac{x}{3}}$$

h
$$4e^{x^3-2x}$$

i
$$5e^{\sin x}$$

a
$$e^{4x}$$
 b e^{4x+1} c e^{x^2} d e^{1-x^2} e $e^{\cos x}$ f $2e^{3x+4}$ g $3e^{\frac{x}{3}}$ h $4e^{x^3-2x}$ i $5e^{\sin x}$ j $-e^{2\cos x}$

$$\ln(x+3)$$

$$1 \ln(3x-1)$$

k
$$\ln(x+3)$$
 1 $\ln(3x-1)$ m $3 \ln(1-2x)$ n $\ln(2x^3+5)$ o $\ln(\sin x)$
p $\ln(x+3)^2$ q $\ln(\frac{1}{x})$ r $\sin(\ln x)$ s $(\ln(x))^3$ t $\frac{1}{\ln x}$

$$t = \frac{1}{\ln x}$$

2 Differentiate

$$a e^{\frac{1}{2x}}$$

b
$$e^{\sin^2 x}$$

$$c e^{\frac{x+1}{x-1}}$$

$$d e^{\sin x \cos x}$$

$$f \ln\left(\frac{1}{x^2}\right)$$

g
$$\ln(\sin^2 x)$$

$$h e^x \ln x$$

a
$$e^{\frac{1}{2x}}$$
 b $e^{\sin^2 x}$ c $e^{\frac{x+1}{x-1}}$ d $e^{\sin x \cos x}$ e $e^{\sec x}$ f $\ln\left(\frac{1}{x^2}\right)$ g $\ln(\sin^2 x)$ h $e^x \ln x$ i $\ln x^2 \ln(x+2)$ j $\ln(\sec x)$

3 Calculate f'(x) when f(x) is

a
$$\ln(\cos 3x)$$

b
$$ln(ln(x))$$

a
$$\ln(\cos 3x)$$
 b $\ln(\ln(x))$ c $e^{2x+1}\ln(2x+1)$ d $3e^{\sec x}$

4 Find $\frac{dy}{dx}$ when y is

a
$$(3x + 1)e^{3x}$$
 b $\cos xe^{\cos x}$ c $e^{1-3x} \tan 2x$ d $e^{(1-\ln x)}$ e $4e^x \cot x$

b
$$\cos xe^{\cos x}$$

$$e^{1-3x} \tan 2x$$

$$d e^{(1-\ln x)}$$

$$e^{4e^x}\cot x$$

5 Differentiate

a
$$\frac{2x}{3e^x}$$

b
$$\frac{x+e^x}{x-e^x}$$

$$c \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

$$d \frac{\ln x + \ln 2x}{e^{x-1}}$$

e
$$\frac{(x-1)(x+2)}{e^{x-1}}$$

$$f \frac{\ln(x+1)}{e^x + \ln x}$$

$$g \frac{e^x}{\sqrt{\ln x}}$$

a
$$\frac{2x}{3e^x}$$
 b $\frac{x + e^x}{x - e^x}$ c $\frac{e^x + e^{-x}}{e^x - e^{-x}}$ d $\frac{\ln x + \ln 2x}{e^{x-1}}$ e $\frac{(x-1)(x+2)}{e^{x-1}}$ f $\frac{\ln(x+1)}{e^x + \ln x}$ g $\frac{e^x}{\sqrt{\ln x}}$ h $\frac{\ln(x^2 + 2x - 1)}{\sqrt{e^x}}$ i $\cos(\frac{\ln x}{e^x})$

Answers to AH Maths (MiA), pg. 58-9, Ex. 4.9

1 a
$$4e^{4x}$$

c
$$2xe^{x^2}$$

d
$$-2xe^{1-}$$

$$e = -\sin x e^{\cos x}$$

$$\sigma = e^{\frac{x}{3}}$$

h
$$4(3x^2-2)e^{x^3-2x}$$

i
$$5\cos x e^{\sin x}$$

$$i \quad 2 \sin x e^{2 \cos x}$$

$$k = \frac{1}{x+3}$$

$$1 \frac{3}{3x-1}$$

$$-\frac{6}{1-2x}$$

$$\frac{6x^2}{2x^3+5}$$

$$o \quad \frac{\cos x}{\sin x} = \cot x$$

$$P \frac{2(x+3)}{(x+3)^2} = \frac{2}{x+3}$$

$$q -\frac{1}{x}$$

$$r = \frac{\cos(\ln x)}{x}$$

s
$$\frac{3(\ln x)^2}{x}$$

$$t = -\frac{1}{x(\ln x)^2}$$

2 a
$$-\frac{1}{2x^2}e^{\frac{1}{2x}}$$

b
$$2 \sin x \cos x e^{\sin^2 x}$$

$$c = \frac{2}{(x-1)^2} e^{\frac{x+1}{x-1}}$$

d
$$(\cos^2 x - \sin^2 x)e^{\sin x \cos x}$$

e
$$\sec x \tan x e^{\sec x}$$

$$f -\frac{2}{x^3}x^2 = -\frac{2}{x}$$

$$g \quad \frac{2\sin x \cos x}{\sin^2 x} = 2\cot x$$

h
$$e^x \ln x + \frac{e^x}{x}$$

$$i \quad \frac{2\ln(x+2)}{x} + \frac{\ln x^2}{x+2} \qquad j \quad \frac{\sec x \tan x}{\sec x} = \tan x$$

$$j \quad \frac{\sec x \tan x}{\sec x} = \tan x$$

$$3 \quad a \quad -3 \tan 3x$$

$$b = \frac{1}{x \ln x}$$

3 a
$$-3 \tan 3x$$
 b $\frac{1}{x \ln x}$
c $2e^{2x+1} \ln (2x+1) + \frac{2e^{2x+1}}{2x+1}$
d $3 \sec x \tan x e^{\sec x}$ e $e^x \cdot e^{e^x} = e^{e^x + x}$

d
$$3 \sec x \tan x e^{\sec x}$$

$$e \quad e^x \cdot e^{e^x} = e^{e^x + x}$$

4 a
$$3e^{3x}(2+3x)$$

b
$$-\sin x e^{\cos x} (1 + \cos x)$$

$$e^{1-3x}$$
 (-3 tan 2x + 2 sec² 2x)

$$d - \frac{e^{1-\ln x}}{x} = -\frac{e^1}{xe^{\ln x}} = -\frac{e}{x^2}$$

e
$$4e^x(\cot x - \csc^2 x)$$

a
$$\frac{2-2x}{3e^x}$$

b
$$\frac{2e^{x}(x-1)}{(x-e^{x})^{2}}$$

$$c = \frac{-4}{(e^x - e^{-x})^2}$$

$$d = \frac{2 - x \ln (2x^2)}{xe^{x-1}}$$

$$e \quad \frac{3+x-x^2}{e^{x-1}}$$

$$f = \frac{(e^x + \ln x) \frac{1}{(x+1)} - \ln (x+1) \left(e^x + \frac{1}{x}\right)}{(e^x + \ln x)^2}$$

Answers to AH Maths (MIA), pg. 58-9, Ex. 4.9

1 a
$$4e^{4x}$$
 b $4e^{4x+1}$ c $2xe^{x^2}$ d $-2xe^{1-x^2}$ e $-\sin x e^{\cos x}$ f $6e^{3x+4}$ b $-\sin x e^{\cos x}$ (1 + cos x) c $e^{\frac{x}{3}}$ i $5\cos x e^{\sin x}$ j $2\sin x e^{2\cos x}$ d $-\frac{e^{1-3x}}{x} = \frac{e^{1-3x}}{x^2} = \frac{e^{1-3x}}{x^2}$ e $4e^{x}(\cos x - \csc^2 x)$ d $-\frac{e^{1-\ln x}}{x} = -\frac{e^1}{x^2}$ e $4e^{x}(\cot x - \csc^2 x)$ s $-\frac{6}{1-2x}$ o $\frac{\cos x}{1-2x}$ o $\frac{$

$$\frac{(x-1)^{2}}{d} \frac{(\cos^{2}x - \sin^{2}x)e^{\sin x \cos x}}{(\cos^{2}x - \sin^{2}x)e^{\sin x \cos x}} = \frac{1}{2x} \frac{1 \ln x}{\ln x} = \frac{2x \ln x}{2x (\ln x)^{\frac{3}{2}}}$$

$$\frac{2 \sin x \cos x}{\sin^{2}x} = 2 \cot x \qquad h \qquad e^{x} \ln x + \frac{e^{x}}{x}$$

$$\frac{2 \ln(x+2)}{\sin^{2}x} + \frac{\ln x^{2}}{\sin^{2}x} \qquad i \qquad \frac{\sec x \tan x}{\sin^{2}x} = \tan x$$

$$\frac{2 \ln(x+2)}{\sin^{2}x} + \frac{\ln x^{2}}{\sin^{2}x} \qquad i \qquad \frac{\sec x \tan x}{\sin^{2}x} = \tan x$$

$$i - \sin\left(\frac{\ln x}{e^x}\right) \left(\frac{1 - x \ln x}{x e^x}\right)$$