21 / 9 / 17

Unit 1 : Differential Equations - Lesson 4
$2^{\text {nd }}$-Order Non-Homogeneous Differential Equations

LI

- Solve DEs of the form $a y^{\prime \prime}+b y^{\prime}+c y=Q(x)$.

SC

- Complementary Function.
- Particular Integral.

A $2^{\text {nd }}$-order (linear, ordinary) non-homogeneous differential equation (with constant coefficients) is a differential equation that can be written in the form :

$$
\begin{gathered}
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=Q(x) \\
\left(a y^{\prime \prime}+b y^{\prime}+c y=Q(x)\right) \\
(a, b, c \in \mathbb{R}, Q(x) \neq 0)
\end{gathered}
$$

Solving the above type of differential equation requires the following steps:

- Solve the associated homogeneous equation:

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

The solution to this is called the Complementary Function (CF) $y_{c F}$.

- Obtain a solution for the equation $\underset{\sim}{2}$. This solution is called the Particular Integral (PI) $y_{P I}$.

The form of the PI depends on the form of $Q(x)$.

Q (x)	PI
$C x+D$	$y_{\text {PI }}=R x+T$
$C x^{2}+D x+E$	$y_{\text {PI }}=R x^{2}+T x+U$
$C e^{p x}$	$y_{\text {PI }}=R e^{p x}$
$C \sin p x$	$y_{\text {PI }}=R \sin p x+T \cos p x$
$C \cos p x$	$y_{\text {PI }}=R \sin p x+T \cos p x$
$C e^{p x}+D$	$y_{\text {PI }}=R e^{p x}+\mathrm{T}$
$C \sin p x+D$	$y_{\text {pI }}=R \sin p x+T \cos p x+U$
$C \operatorname{cospx}+\mathrm{D}$	$y_{\text {PI }}=R \sin p x+T \cos p x+U$

The only exception to this is if $Q(x)$ is of the same form as a term in the CF. In which case, take the PI to be $x Q(x)$; if this is of the same form as a term in the $C F$, take the PI to be $x^{2} Q(x)$. This process continues.

- The general solution to $\underset{\sim}{s}$ is then:

$$
y_{G S}=y_{c F}+y_{p r}
$$

Example 1

Obtain the general solution of,

$$
y^{\prime \prime}-7 y^{\prime}+10 y=20 x-4
$$

The Auxiliary Equation is,

$$
m^{2}-7 m+10=0
$$

Solving this for m gives,

$$
\begin{aligned}
& & (m-2)(m-5) & =0 \\
\Rightarrow & & m & =2, m=5
\end{aligned}
$$

The CF is thus,

$$
y_{C F}=A e^{2 x}+B e^{5 x}
$$

For the PI try,

$$
\begin{aligned}
& \\
\therefore & y_{P I}
\end{aligned}=R x+T
$$

Substituting this information into $\sqrt[4]{\sqrt{3}}$ gives,

$$
\begin{array}{cc}
& 0-7 R+10(R x+T)=20 x-4 \\
\Rightarrow & (10 R) x+(10 T-7 R)=20 x-4 \\
\therefore & 10 R=20,10 T-7 R=-4 \\
\Rightarrow & R=2, T=1 \\
\therefore & Y_{\text {PI }}=2 x+1 \\
& Y_{G S}=Y_{C F}+Y_{\text {PI }} \\
\therefore & Y_{G S}=A e^{2 x}+B e^{5 x}+2 x+1
\end{array}
$$

Example 2

Obtain the general solution of,

$$
y^{\prime \prime}-4 y^{\prime}+3 y=6 e^{x}
$$

$$
\pm
$$

The Auxiliary Equation is,

$$
m^{2}-4 m+3=0
$$

Solving this for m gives,

$$
\begin{aligned}
& & (m-1)(m-3) & =0 \\
\Rightarrow & & m & =1, m=3
\end{aligned}
$$

The CF is thus,

$$
y_{C F}=A e^{x}+B e^{3 x}
$$

As the RHS of $\hat{\sim}$ is of the same form as a term in the CF (A e ${ }^{x}$), we try for the PI,

$$
\begin{array}{rlrl}
& & y_{P I} & =R x e^{x} \\
\therefore & y_{P I}^{\prime} & =R e^{x}+R \times e^{x} \\
\Rightarrow & y_{P I}^{\prime \prime} & =R e^{x}+R e^{x}+R x e^{x} \\
\Rightarrow & y_{\mathrm{PI}}^{\prime \prime} & =2 R e^{x}+R x e^{x}
\end{array}
$$

Substituting this information into $\underset{\sim}{*}$ gives,

$$
\begin{array}{rlrl}
& & \left(2 R e^{x}+R \times e^{x}\right)-4\left(R e^{x}+R x e^{x}\right) \\
& + & 3\left(R \times e^{x}\right) & =6 e^{x} \\
\Rightarrow & & -2 R e^{x}=6 e^{x} \\
\Rightarrow & & R=-3 \\
\therefore & & & y_{P I}=-3 x e^{x} \\
& & y_{G S}=y_{C F}+y_{P I} \\
\therefore & & y_{G S}=A e^{x}+B e^{3 x}-3 x e^{x}
\end{array}
$$

Example 3

Obtain the general solution of,

$$
y^{\prime \prime}-2 y^{\prime}+5 y=30 \sin x
$$

and also the particular solution satisfying $y(0)=4$ and $y^{\prime}(0)=13$.

The Auxiliary Equation is,

$$
m^{2}-2 m+5=0
$$

Solving this for m gives (check!) $m=1 \pm 2 \mathrm{i}$.
The CF is thus,

$$
y_{C F}=e^{x}(A \cos 2 x+B \sin 2 x)
$$

For the PI try,

$$
\begin{array}{rlrl}
& & y_{\mathrm{PI}} & =\mathrm{R} \sin x+\mathrm{T} \cos x \\
\therefore & \mathrm{y}_{\mathrm{PI}}^{\prime} & =\mathrm{R} \cos x-\mathrm{T} \sin x \\
\Rightarrow & \mathrm{y}_{\mathrm{PI}}^{\prime \prime} & =-\mathrm{R} \sin x-\mathrm{T} \cos x
\end{array}
$$

Substituting this information into gives, using the abbreviations $S=\sin x$ and $C=\cos x$,

$$
\begin{aligned}
& (-R S-T C)-2(R C-T S) \\
& +5(R S+T C)=30 S \\
& \Rightarrow(4 R+2 T) S+(-2 R+4 T) C=30 S \\
& \therefore \quad 4 R+2 T=30,-2 R+4 T=0 \\
& \Rightarrow \quad R=6, \mathrm{~T}=3 \\
& \therefore \quad y_{\text {DI }}=6 \sin x+3 \cos x \\
& y_{\text {gS }}=y_{c F}+y_{\text {pI }} \\
& \therefore \quad y_{65}=e^{x}(A \cos 2 x+B \sin 2 x) \\
& +6 \sin x+3 \cos x
\end{aligned}
$$

$$
\begin{aligned}
y= & e^{x}(A \cos 2 x+B \sin 2 x) \\
& +6 \sin x+3 \cos x \\
\therefore \quad y^{\prime}= & e^{x}(A \cos 2 x+B \sin 2 x) \\
& +e^{x}(-2 A \sin 2 x+2 B \cos 2 x) \\
& +6 \cos x-3 \sin x
\end{aligned}
$$

The initial conditions respectively give,

$$
\begin{aligned}
4 & =A+3 \\
& \\
\therefore \quad 13 & =A+2 B+6 \\
& \quad A
\end{aligned}
$$

The required particular solution is thus,

$$
\begin{aligned}
y= & e^{x}(\cos 2 x+3 \sin 2 x) \\
& +6 \sin x+3 \cos x
\end{aligned}
$$

AH Maths - MiA (2 ${ }^{\text {nd }}$ Edn.)

- pg. 146 Ex. 8.9 Q 1, 2.

Ex. 8.9

1 Find the general solution to each of these.
a $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}-3 y=3 x+1$
b $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-3 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=x^{2}+2 x+1$
c $2 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+3 \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 y=e^{\frac{x}{2}}$
d $2 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+7 \frac{\mathrm{~d} y}{\mathrm{~d} x}+3 y=50 \sin x$
e $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+6 \frac{\mathrm{~d} y}{\mathrm{~d} x}+9 y=50 e^{2 x}$
f $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-10 \frac{\mathrm{~d} y}{\mathrm{~d} x}+25 y=4 e^{5 x}$
g $4 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=5 x-3 \quad$ h $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} x}+10 y=6 e^{4 x}$
i $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+8 y=1$
j $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 y=8 \sin 2 x$

2 Find the particular solution to each of these differential equations.
a $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-5 \frac{\mathrm{~d} y}{\mathrm{~d} x}+6 y=12 x+8$, when $x=0, y=2$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=6$
b $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-3 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=e^{x}$, when $x=0, y=3-e$ and $x=1, y=e$
c $2 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-3 \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=x^{2}$, when $x=0, y=9$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=5$
d $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=6 e^{x}$, when $x=0, y=-1$ and when $x=1, y=4 e$
e $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 y=6 \cos x$, when $x=0, y=3$ and when $x=\frac{\pi}{4}, y=2+\sqrt{2}$

Answers to AH Maths (MiA), pg. 146, Ex. 8.9

$$
\begin{array}{rl}
1 \text { a } \quad y & =A e^{x}+B e^{-3 x}-x-1 \\
\mathrm{~b} & y
\end{array}=A e^{2 x}+B e^{x}+\frac{1}{2} x^{2}+\frac{5}{2} x+\frac{15}{4} .
$$

