

Solving the above type of differential equation requires the following steps :

• Solve the associated homogeneous equation :

$$a y'' + b y' + c y = 0$$

The solution to this is called the Complementary Function (CF) $\gamma_{\mbox{\tiny CF}}.$

• Obtain a solution for the equation \bigstar . This solution is called the Particular Integral (PI) $\gamma_{_{\rm PI}}.$

The form of the PI depends on the form of Q(x).

Q (x)	PI
C x + D	$\mathbf{y}_{_{\mathrm{PI}}} = \mathbf{R} \mathbf{x} + \mathbf{T}$
$C x^2 + D x + E$	$\mathbf{y}_{_{\mathrm{PI}}} = \mathbf{R} \mathbf{x}^2 + \mathbf{T} \mathbf{x} + \mathbf{U}$
Ce ^{px}	$y_{_{PI}} = R e^{px}$
C sin px	$y_{_{PI}} = R \sin px + T \cos px$
C cos px	$\mathbf{y}_{_{PI}} = \mathbf{R} \sin \mathbf{px} + \mathbf{T} \cos \mathbf{px}$
$C e^{px} + D$	$y_{_{PI}} = R e^{px} + T$
$C \sin px + D$	$\mathbf{y}_{_{PT}} = \mathbf{R} \sin \mathbf{px} + \mathbf{T} \cos \mathbf{px} + \mathbf{U}$
C cos px + D	$y_{_{PT}} = R sin px + T cos px + U$

The only exception to this is if Q(x) is of the same form as a term in the CF. In which case, take the PI to be x Q(x); if this is of the same form as a term in the CF, take the PI to be $x^2 Q(x)$. This process continues.

• The general solution to \bigstar is then :

As the RHS of \bigstar is of the same form as a term in the CF ($A e^{\times}$), we try for the PI, $y_{PT} = R \times e^{\times}$ $\mathbf{y}_{_{\mathrm{PT}}}' = \mathbf{R} \mathbf{e}^{\times} + \mathbf{R} \mathbf{x} \mathbf{e}^{\times}$. . $y_{PI}'' = Re^{x} + Re^{x} + Rxe^{x}$ \Rightarrow $y_{pT}'' = 2 R e^{x} + R x e^{x}$ \Rightarrow Substituting this information into \bigstar gives, $(2 R e^{x} + R x e^{x}) - 4 (R e^{x} + R x e^{x})$ $+ 3 (R \times e^{x}) = 6 e^{x}$ \Rightarrow -2Re^x = 6e^x R = -3 \Rightarrow $y_{PI} = -3 \times e^{\times}$ • $\mathbf{y}_{\text{gs}} = \mathbf{y}_{\text{cf}} + \mathbf{y}_{\text{pi}}$ $y_{GS} = A e^{x} + B e^{3x} - 3 x e^{x}$

For the PI try,

$$y_{rr} = R \sin x + T \cos x$$

$$\therefore \qquad y_{rr}' = R \cos x - T \sin x$$

$$\Rightarrow \qquad y_{rr}'' = -R \sin x - T \cos x$$
Substituting this information into \bigstar gives, using the abbreviations $S = \sin x$ and $C = \cos x$,

$$(-R S - TC) - 2 (R C - TS) + 5 (R S + TC) = 30 S$$

$$\Rightarrow (4R + 2T) S + (-2R + 4T) C = 30 S$$

$$\therefore \qquad 4R + 2T = 30, -2R + 4T = 0$$

$$\Rightarrow \qquad R = 6, T = 3$$

$$\therefore \qquad y_{rr} = 6 \sin x + 3 \cos x$$

$$y_{es} = y_{cr} + y_{rr}$$

$$\therefore \qquad y_{es} = e^{x} (A \cos 2x + B \sin 2x) + 6 \sin x + 3 \cos x$$

$$y = e^{x} (A \cos 2x + B \sin 2x) + 6 \sin x + 3 \cos x$$

$$y' = e^{x} (A \cos 2x + B \sin 2x) + e^{x} (-2 A \sin 2x + 2 B \cos 2x) + 6 \cos x - 3 \sin x$$

The initial conditions respectively give,

$$4 = A + 3$$

$$13 = A + 2 B + 6$$

A = 1, B = 3

The required particular solution is thus,

•

y =
$$e^{x}$$
 (cos 2x + 3 sin 2x)
+ 6 sin x + 3 cos x

