25 / 5 / 17

Linear and Parabolic Motion - Lesson 3

Vector Functions

LI

• Differentiate and integrate vector functions of time.

<u>SC</u>

• Diff. and Int. functions.

Calculus of Vector Functions

Differentiating a vector means differentiating each component of that vector; similar for integrating a vector

Reminder

displacement velocity acceleration

$$\underline{\mathbf{r}}(t) = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\underline{\mathbf{v}}(t) = \begin{pmatrix} \dot{\mathbf{x}} \\ \dot{\mathbf{y}} \\ \dot{\mathbf{z}} \end{pmatrix}$$

$$\underline{a}$$
 (†) = $\begin{pmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{pmatrix}$

Example 1

A particle has acceleration $4\mathbf{j}-2\mathbf{k}$. Initially, it has position vector $-24\mathbf{j}-72\mathbf{j}+6\mathbf{k}$ and velocity $4\mathbf{j}+5\mathbf{k}$. Find:

- (a) the velocity at time t.
- (b) the speed when t = 2.
- (c) the position vector at time t.
- (d) when the particle passes through the origin.

(a)
$$\underline{\mathbf{a}}(\dagger) = 4\mathbf{j} - 2\mathbf{k}$$

$$v(t) = 4ti - 2tk + C$$

$$\mathbf{v}(0) = 4\mathbf{i} + 5\mathbf{k}$$
 gives,

$$4i + 5k = 4(0)i - 2(0)k + C$$

$$\Rightarrow \qquad \underline{\mathbf{c}} = 4\mathbf{\underline{i}} + 5\mathbf{\underline{k}}$$

$$\therefore \qquad \underline{\mathbf{v}}(t) = 4\underline{\mathbf{i}} + 4t\underline{\mathbf{j}} + (5-2t)\underline{\mathbf{k}}$$

(b)
$$\underline{v}(t) = 4\underline{i} + 4t\underline{j} + (5 - 2t)\underline{k}$$

$$\dot{\underline{\mathbf{v}}}(2) = 4 \mathbf{\underline{i}} + 8 \mathbf{\underline{j}} + \mathbf{\underline{k}}$$

∴
$$v(2) = 9 \text{ m s}^{-1}$$

(c)
$$\underline{\mathbf{v}}(\dagger) = 4\underline{\mathbf{i}} + 4\dagger\underline{\mathbf{j}} + (5-2\dagger)\underline{\mathbf{k}}$$

$$\therefore \qquad \underline{\mathbf{r}}(t) = 4t\underline{\mathbf{i}} + 2t^2\underline{\mathbf{j}} + (5t - t^2)\underline{\mathbf{k}} + \underline{\mathbf{D}}$$

$$r(0) = -24i - 72j + 6k$$
 gives (check!),

$$D = -24i - 72i + 6k$$

$$\underline{\mathbf{r}}(t) = \begin{pmatrix} 4t - 24 \\ 2t^2 - 72 \\ 6t + 5t - t^2 \end{pmatrix}$$

(d) Particle passes through origin means,

$$\underline{\mathbf{r}}(t) = \underline{\mathbf{0}}$$

$$\therefore \qquad 4 \uparrow - 24 = 0 \Rightarrow \underline{\uparrow} = 6$$

$$2 t^2 - 72 = 0 \Rightarrow t^2 = 36 \Rightarrow \underline{t = \pm 6}$$

$$6 + 5 + 7 + 2 = 0 \Rightarrow (6 - 1)(1 + 1) = 0 \Rightarrow 1 = 6, -1$$

As all 3 equations have a common solution (t = 6), the particle passes through the origin at t = 6 s

Example 2

Two particles have velocities $2 + \underline{i} + 12 \underline{j}$ and $4 \underline{i} + (3 - 2 +) \underline{j}$.

Find when the particles are moving in perpendicular directions and find the displacement of each particle at that instant, assuming both particles start from the origin.

$$\underline{\mathbf{v}}_{A}(\dagger) = 2 \dagger \underline{\mathbf{i}} + 12 \underline{\mathbf{j}}$$
, $\underline{\mathbf{v}}_{B}(\dagger) = 4 \underline{\mathbf{i}} + (3 - 2 \dagger) \underline{\mathbf{j}}$

Particles moving perpendicularly means that their velocity vectors are perpendicular (so their scalar product vanishes),

$$\underline{\mathbf{v}}_{A}(t) \bullet \underline{\mathbf{v}}_{B}(t) = 0$$

$$\therefore (2 t \underline{\mathbf{i}} + 12 \underline{\mathbf{j}}) \bullet (4 \underline{\mathbf{i}} + (3 - 2 t) \underline{\mathbf{j}}) = 0$$

$$\Rightarrow 8 t + 12 (3 - 2 t) = 0$$

$$\Rightarrow 8 t + 36 - 24 t = 0$$

$$\Rightarrow 16 t = 36$$

$$\Rightarrow t = 9/4 s$$

$$\underline{\mathbf{v}}_{A}(t) = 2 \dagger \underline{\mathbf{i}} + 12 \mathbf{j}$$

$$\underline{\mathbf{r}}_{A}(t) = t^{2} \underline{\mathbf{i}} + 12 \dagger \mathbf{j} + \underline{\mathbf{c}}$$

$$\underline{\mathbf{r}}_{A}(0) = \underline{\mathbf{0}} \Rightarrow \underline{\mathbf{c}} = \underline{\mathbf{0}}$$

$$\underline{\mathbf{r}}_{A}(t) = t^{2} \underline{\mathbf{i}} + 12 \dagger \underline{\mathbf{j}}$$

$$\underline{\mathbf{r}}_{A}(9/4) = (81/16) \underline{\mathbf{i}} + 27 \underline{\mathbf{j}}$$

$$\underline{\mathbf{v}}_{B}(t) = 4\underline{\mathbf{i}} + (3 - 2t)\underline{\mathbf{j}}$$

$$\underline{\mathbf{r}}_{B}(t) = 4t\underline{\mathbf{i}} + (3t - t^{2})\underline{\mathbf{j}} + \underline{\mathbf{D}}$$

$$\underline{\mathbf{r}}_{B}(0) = \underline{\mathbf{0}} \Rightarrow \underline{\mathbf{D}} = \underline{\mathbf{0}}$$

$$\underline{\mathbf{r}}_{B}(t) = 4t\underline{\mathbf{i}} + (3t - t^{2})\underline{\mathbf{j}}$$

$$\underline{\mathbf{r}}_{B}(9/4) = 9\underline{\mathbf{i}} + (27/16)\underline{\mathbf{j}}$$

Example 3

A particle has position vector $\underline{\mathbf{r}}(t) = 2 \cos(17t) \underline{\mathbf{i}} - 2 \sin(17t) \underline{\mathbf{k}}$.

Show that the particle moves in a circle, stating the radius.

Show also that the acceleration vector is proportional to the displacement, stating the proportionality constant.

$$\underline{\mathbf{r}}(t) = 2\cos(17t)\underline{\mathbf{i}} - 2\sin(17t)\underline{\mathbf{k}} = \mathbf{x}(t)\underline{\mathbf{i}} + \mathbf{z}(t)\underline{\mathbf{k}}$$

$$x(t) = 2 \cos(17t)$$
, $z(t) = -2 \sin(17t)$

$$\therefore (x(t))^2 + (z(t))^2 = 4 \cos^2(17t) + 4 \sin^2(17t)$$

$$\Rightarrow$$
 $(x(t))^2 + (z(t))^2 = 4(\cos^2(17t) + \sin^2(17t))$

$$\Rightarrow$$
 $(x(t))^2 + (z(t))^2 = 4$

 $x^2 + z^2 = 4$ is a circle in the x - z plane with centre (0, 0) and radius 2

$$\underline{\mathbf{r}}(t) = 2\cos(17t)\underline{\mathbf{i}} - 2\sin(17t)\underline{\mathbf{k}}$$

$$\dot{v}(t) = -2(17)\sin(17t)\dot{i} - 2(17)\cos(17t)\dot{k}$$

$$\dot{a}(t) = -2(17)^2 \cos(17t) \, \underline{i} + 2(17)^2 \sin(17t) \, \underline{k}$$

$$\Rightarrow \quad \underline{\mathbf{a}}(t) = -289(2\cos(17t)\underline{\mathbf{i}} - 2\sin(17t)\underline{\mathbf{k}})$$

$$\Rightarrow \quad \underline{\mathbf{a}}(\dagger) = -289 \, \underline{\mathbf{r}}(\dagger)$$

As, $\underline{\mathbf{a}}(t) = -289 \, \underline{\mathbf{r}}(t)$, $\underline{\mathbf{a}}(t) \propto \underline{\mathbf{r}}(t)$, with the proportionality constant being -289

Blue Book

- pg. 23 Ex. 2 B Q 2, 9, 10, 12, 16.
- pg. 398-399 Ex. 16 A Q 15 26, 33 43.