$25 / 5 / 17$
 Linear and Parabolic Motion - Lesson 3

 Vector Functions

 Vector Functions}

LI

- Differentiate and integrate vector functions of time. SC
- Diff. and Int. functions.

Calculus of Vector Functions

Differentiating a vector means differentiating each component of that vector; similar for integrating a vector

Reminder

displacement
velocity acceleration

$$
\underline{r}(t)=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

$$
\underline{v}(\dagger)=\left(\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right)
$$

$$
\underline{\mathbf{a}}(\dagger)=\left(\begin{array}{l}
\ddot{x} \\
\ddot{y} \\
\ddot{z}
\end{array}\right)
$$

Example 1

A particle has acceleration $4 \mathbf{j}-2 \mathbf{k}$. Initially, it has position vector - $24 \underline{\mathbf{i}}-72 \mathbf{j}+6 \underline{\mathbf{k}}$ and velocity $4 \underline{\mathbf{i}}+5 \underline{\mathbf{k}}$. Find:
(a) the velocity at time t.
(b) the speed when $\dagger=2$.
(c) the position vector at time \dagger.
(d) when the particle passes through the origin.
(a)
(b)

$$
\begin{array}{ll}
& \underline{\mathbf{v}}(\boldsymbol{t})=4 \underline{\mathbf{i}}+4 \boldsymbol{\dagger} \mathbf{j}+(5-2 \boldsymbol{\dagger}) \underline{\mathbf{k}} \\
\therefore & \underline{\mathbf{v}}(2)=4 \underline{\mathbf{i}}+8 \mathbf{j}+\underline{\mathbf{k}} \\
\therefore & v(2)=9 \mathrm{~ms}^{-1}
\end{array}
$$

(c)

$$
\underline{v}(t)=4 \underline{\mathbf{i}}+4 t \underline{\mathbf{j}}+(5-2 t) \underline{\mathbf{k}}
$$

$$
\therefore \quad \underline{r}(t)=4 t \underline{i}+2 t^{2} \mathbf{j}+\left(5 \dagger-t^{2}\right) \underline{\mathbf{k}}+\underline{D}
$$

$$
\underline{\mathbf{r}}(0)=-24 \underline{\mathbf{i}}-72 \mathbf{j}+6 \underline{\mathbf{k}} \text { gives (check!), }
$$

$$
\underline{D}=-24 \underline{\mathbf{i}}-72 \mathbf{j}+6 \underline{\mathbf{k}}
$$

$$
\therefore \quad \underline{r}(t)=\left(\begin{array}{c}
4 t-24 \\
2 t^{2}-72 \\
6+5 t-t^{2}
\end{array}\right)
$$

(d) Particle passes through origin means,

$$
\begin{aligned}
\underline{r}(t) & =\underline{0} \\
\therefore \quad 4 t-24 & =0 \Rightarrow t=6 \\
2 t^{2}-72 & =0 \Rightarrow t^{2}=36 \Rightarrow \underline{t= \pm 6} \\
6+5 t-t^{2} & =0 \Rightarrow(6-t)(1+t)=0 \Rightarrow t=6,-1
\end{aligned}
$$

As all 3 equations have a common solution $(\dagger=6)$, the particle passes through the origin at $t=6 \mathrm{~s}$

$$
\begin{aligned}
& \underline{\mathbf{a}}(\boldsymbol{t})=4 \mathbf{j}-2 \underline{\mathbf{k}} \\
& \therefore \quad \underline{v}(\dagger)=4 \dagger \mathbf{j}-2+\underline{\mathbf{k}}+\underline{\boldsymbol{c}} \\
& \underline{\mathbf{v}}(0)=4 \underline{\mathbf{i}}+5 \underline{\mathbf{k}} \text { gives, } \\
& 4 \underline{\mathbf{i}}+5 \underline{\mathbf{k}}=4(0) \underline{\mathbf{i}}-2(0) \underline{\mathbf{k}}+\underline{\mathbf{C}} \\
& \Rightarrow \quad \underline{c}=4 \underline{i}+5 \underline{k} \\
& \therefore \quad \underline{\mathbf{v}}(\dagger)=4 \underline{\mathbf{i}}+4 \boldsymbol{t} \mathbf{j}+(5-2 \boldsymbol{t}) \underline{\mathbf{k}}
\end{aligned}
$$

Example 2

Two particles have velocities $2+\underline{\mathbf{i}}+12 \mathbf{j}$ and $4 \underline{\mathbf{i}}+(3-2 \boldsymbol{t}) \mathbf{j}$.
Find when the particles are moving in perpendicular directions and find the displacement of each particle at that instant, assuming both particles start from the origin.

$$
\underline{\mathbf{v}}_{A}(\dagger)=2 \dagger \underline{\mathbf{i}}+12 \mathbf{j}, \quad \underline{\mathbf{v}}_{B}(\dagger)=4 \underline{\mathbf{i}}+(3-2 \dagger) \mathbf{j}
$$

Particles moving perpendicularly means that their velocity vectors are perpendicular (so their scalar product vanishes),

$$
\begin{array}{rlrl}
& \underline{\mathbf{v}}_{A}(t) \cdot \underline{\mathbf{v}}_{B}(t) & =0 \\
& \therefore & (2+\underline{\mathbf{i}}+12 \mathfrak{j}) \cdot(4 \underline{\mathbf{i}}+(3-2 \dagger) \mathfrak{j}) & =0 \\
\Rightarrow & & 8 t+12(3-2 t)=0 \\
\Rightarrow & 8 t+36-24 t=0 \\
\Rightarrow & & 16 t=36 \\
\Rightarrow & & t=9 / 4 \mathrm{~s}
\end{array}
$$

$$
\underline{\mathbf{v}}_{B}(\dagger)=4 \underline{i}+(3-2 \dagger) \underline{j}
$$

$$
\therefore \quad \underline{\boldsymbol{r}}_{B}(t)=4 t \underline{\mathbf{i}}+\left(3 t-t^{2}\right) \mathbf{j}+\underline{D}
$$

$$
\underline{\mathbf{r}}_{B}(0)=\underline{\mathbf{0}} \Rightarrow \underline{\underline{D}}=\underline{\mathbf{0}}
$$

$$
\therefore \quad \underline{\mathbf{r}_{B}(t)=4 t \underline{i}+\left(3 t-t^{2}\right) \mathfrak{j}}
$$

$$
\therefore \quad \underline{\mathbf{r}}_{B}(9 / 4)=9 \underline{\mathbf{i}}+(27 / 16) \mathfrak{j}
$$

$$
\begin{aligned}
& \underline{\mathbf{v}}_{\mathrm{A}}(\mathrm{t})=2 \boldsymbol{t} \underline{\mathbf{i}}+12 \mathbf{j} \\
& \therefore \quad \underline{\mathbf{r}}_{A}(t)=t^{2} \underline{\mathbf{i}}+12 \boldsymbol{t} \mathbf{j}+\underline{\boldsymbol{C}} \\
& \underline{\boldsymbol{r}}_{A}(0)=\underline{\mathbf{0}} \Rightarrow \underline{\boldsymbol{C}}=\underline{\mathbf{0}} \\
& \therefore \quad \underline{\boldsymbol{r}_{A}(t)=t^{2} \underline{\mathbf{i}}+12 t \boldsymbol{j}} \\
& \therefore \quad \underline{\mathbf{r}}_{\mathrm{A}}(9 / 4)=(81 / 16) \underline{\mathfrak{i}}+27 \boldsymbol{j}
\end{aligned}
$$

Example 3

A particle has position vector $\underline{\mathbf{r}}(t)=2 \cos (17 t) \underline{i}-2 \sin (17 t) \underline{\mathbf{k}}$.

Show that the particle moves in a circle, stating the radius.

Show also that the acceleration vector is proportional to the displacement, stating the proportionality constant.

$$
\begin{aligned}
& \underline{\boldsymbol{r}}(t)=2 \cos (17 t) \underline{\mathbf{i}}-2 \sin (17 t) \underline{\mathbf{k}}=x(t) \underline{\mathbf{i}}+z(t) \underline{\mathbf{k}} \\
& \therefore \quad x(t)=2 \cos (17 t), z(t)=-2 \sin (17 t) \\
& \therefore \quad(x(t))^{2}+(z(t))^{2}=4 \cos ^{2}(17 t)+4 \sin ^{2}(17 t) \\
& \Rightarrow \quad(x(t))^{2}+(z(t))^{2}=4\left(\cos ^{2}(17 t)+\sin ^{2}(17 t)\right) \\
& \Rightarrow \quad(x(t))^{2}+(z(t))^{2}=4 \\
& x^{2}+z^{2}=4 \text { is a circle in the } x-z \\
& \text { plane with centre }(0,0) \text { and radius } 2 \\
& \underline{\boldsymbol{r}}(\dagger)=2 \cos (17 \dagger) \underline{\mathbf{i}}-2 \sin (17 \dagger) \underline{\mathbf{k}} \\
& \therefore \quad \underline{\mathbf{v}}(\dagger)=-2(17) \sin (17 \dagger) \underline{\mathbf{i}}-2(17) \cos (17 \dagger) \underline{\mathbf{k}} \\
& \therefore \quad \underline{a}(\dagger)=-2(17)^{2} \cos (17 \dagger) \underline{i}+2(17)^{2} \sin (17 \dagger) \underline{k} \\
& \Rightarrow \quad \underline{\mathbf{a}}(\dagger)=-289(2 \cos (17 t) \underline{\mathbf{i}}-2 \sin (17 \dagger) \underline{\mathbf{k}}) \\
& \Rightarrow \quad \underline{\mathbf{a}}(\dagger)=-289 \underline{r}(\dagger) \\
& \text { As, } \underline{\mathbf{a}}(\dagger)=-289 \underline{\mathbf{r}}(\dagger), \underline{\mathbf{a}}(\dagger) \propto \underline{\mathbf{r}}(\dagger) \text {, with the } \\
& \text { proportionality constant being - } 289
\end{aligned}
$$

Blue Book

-pg. 23 Ex. 2 B Q 2, 9, 10, 12, 16.
pg. 398-399 Ex. 16 A Q 15-26, 33-43.

