## 1/6/16

Differentiation and Properties of Functions - Lesson 3

## Stationary Points

## LI

- Know the different types of Stationary Points (SPs).
- Determine the coordinates and nature of SPs of functions.

## <u>SC</u>

- Differentiate.
- Nature Table.

A Stationary Point (SP) is a point where a function has zero derivative

## Types (aka Nature) of Stationary Points



TURNING POINTS



Gradient goes from - ve to 0 to + ve





Gradient goes from + ve to 0 to + ve



## Strategy for finding SPs

- Differentiate function.
- Put derivative equal to 0 and solve for x.
- Get y value(s) from original function.
- Draw Nature Table.
- State conclusion.

Determine the coordinates and nature of the stationary points of the function

$$f(x) = \frac{1}{3}x^{3} - 2x^{2} - 12x + 5.$$

$$f(x) = \frac{1}{3}x^{3} - 2x^{2} - 12x + 5$$

$$f'(x) = x^{2} - 4x - 12$$

For stationary points (SPs), f'(x) = 0:

$$x^{2} - 4x - 12 = 0$$

$$\therefore (x - 6)(x + 2) = 0$$

$$\Rightarrow x = 6, x = -2$$

$$\frac{x = 6:}{f(x) = \frac{1}{3} x^3 - 2x^2 - 12x + 5}$$

$$f(6) = \frac{1}{3} (6)^3 - 2 (6)^2 - 12 (6) + 5$$

$$f(6) = 72 - 72 - 72 + 5$$

$$f(6) = -67$$

$$\frac{x = -2:}{f(x) = \frac{1}{3} x^3 - 2x^2 - 12x + 5}$$

$$f(-2) = \frac{1}{3} (-2)^3 - 2 (-2)^2 - 12 (-2) + 5$$

$$f(-2) = -\frac{8}{3} - 8 + 24 + 5$$

$$f(-2) = \frac{55}{3}$$

| ×       | <u>-3</u> | - 2 | 0 | 6 | 7 |
|---------|-----------|-----|---|---|---|
| f ' (x) | +         | 0   | - | 0 | + |
| Slope   |           |     | / |   |   |

$$f'(x) = (x - 6)(x + 2)$$

$$\therefore$$
 f'(-3) = (-3 - 6)(-3 + 2)

$$\Rightarrow$$
 f'(-3) = 9 > 0

$$f'(x) = (x - 6)(x + 2)$$

$$f'(0) = (0 - 6)(0 + 2)$$

$$\Rightarrow f'(0) = -12 < 0$$

$$f'(x) = (x - 6)(x + 2)$$

$$f'(7) = (7 - 6)(7 + 2)$$

$$\Rightarrow f'(7) = 9 > 0$$

$$\left(-2, \frac{55}{3}\right)$$
 is a local max,

and (6, -67) is a local min.

Find the coordinates and nature of the stationary points of the function

$$f(x) = \frac{1}{4} x^4 - \frac{4}{3} x^3 + 2 x^2 + 3.$$

$$f(x) = \frac{1}{4} x^4 - \frac{4}{3} x^3 + 2 x^2 + 3.$$

$$f'(x) = x^3 - 4 x^2 + 4 x$$

For SPs, 
$$f'(x) = 0$$
:

$$x^{3} - 4x^{2} + 4x = 0$$
∴  $x(x^{2} - 4x + 4) = 0$ 
⇒  $x(x - 2)(x - 2) = 0$ 
⇒  $x = 0, x = 2$ 

$$\frac{x = 0:}{f(x) = \frac{1}{4}x^4 - \frac{4}{3}x^3 + 2x^2 + 3}$$

$$\therefore f(0) = \frac{1}{4}(0)^4 - \frac{4}{3}(0)^3 + 2(0)^2 + 3$$

$$\Rightarrow$$
 f(0) = 3

$$\frac{x = 2:}{f(x) = \frac{1}{4}x^4 - \frac{4}{3}x^3 + 2x^2 + 3}$$

$$\therefore f(2) = \frac{1}{4}(2)^4 - \frac{4}{3}(2)^3 + 2(2)^2 + 3$$

$$\Rightarrow f(2) = 4 - \frac{32}{3} + 8 + 3$$

$$\Rightarrow f(2) = \frac{13}{3}$$

| ×       | -1 | 0 |   | 2 | 3 |
|---------|----|---|---|---|---|
| f ' (x) | 1  | 0 | + | 0 | + |
| Slope   | /  |   |   |   |   |

$$f'(x) = x(x - 2)^2$$

$$\therefore f'(-1) = -1(-1 - 2)^2$$

$$\Rightarrow$$
 f'(-1) = -9 < 0

$$f'(x) = x(x - 2)^2$$

$$\therefore f'(1) = 1(1 - 2)^2$$

$$\Rightarrow \qquad f'(1) = 1 > 0$$

$$f'(x) = x(x - 2)^2$$

$$\therefore$$
 f'(3) = 3(3 - 2)<sup>2</sup>

$$\Rightarrow f'(3) = 3 > 0$$

(0, 3) is a local min. and

$$\left(2, \frac{13}{3}\right)$$
 is a (rising) P of I

Show that the graph of the cubic curve  $y = x^3 + 2x^2 + 2x + 7$  has no horizontal tangent.

A horizontal tangent means that there is at least one point on the graph at which the gradient is 0. This means that the derivative would have to be 0 there.

$$y = x^3 + 2x^2 + 2x + 7$$
  
 $y' = 3x^2 + 4x + 2$ 

For a horizontal tangent, there must be solutions for x to the equation y' = 0:

$$3x^2 + 4x + 2 = 0$$

The discriminant of this quadratic is 16 - 24 = -8. As the discriminant is < 0, there are no solutions to y' = 0.

As there are no solutions to y' = 0, there is no horizontal tangent to  $y = x^3 + 2x^2 + 2x + 7$ 

Show that the function defined by  $f(x) = -x^3 - 3x^2 - 3x - 1$  has exactly one stationary point and determine its coordinates and nature.

$$f(x) = -x^3 - 3x^2 - 3x - 1$$

$$f'(x) = -3x^2 - 6x - 3$$

For SPs, f'(x) = 0:

$$-3x^{2} - 6x - 3 = 0$$

$$-3(x^{2} + 2x + 1) = 0$$

$$-3(x + 1)^{2} = 0$$

$$x = -1$$

As, there is only 1 solution to f'(x) = 0,  $f(x) = x^3 + 3x^2 + 3x + 1$  has exactly 1 SP

$$f(x) = -x^3 - 3x^2 - 3x - 1$$

$$\therefore f(-1) = -(-1)^3 - 3(-1)^2 - 3(-1) - 1$$

$$\Rightarrow$$
 f(-1) = 1 - 3 + 3 - 1

$$\Rightarrow$$
 f(-1) = 0

| ×       | <del>-2</del> | - 1 | 0 |  |
|---------|---------------|-----|---|--|
| f ' (x) | ı             | 0   | I |  |
| Slope   |               |     |   |  |

$$f'(x) = -3(x + 1)^2$$

$$\therefore f'(-2) = -3(-2 + 1)^2$$

$$\Rightarrow$$
 f'(-2) = -3 < 0

$$f'(x) = -3(x + 1)^2$$

$$f'(0) = -3(0 + 1)^2$$

$$\Rightarrow f'(0) = -3 < 0$$

(-1,0) is a (falling) P of I

Find the coordinates and nature of the stationary points of  $y = \cos x$  (0  $\leq x \leq 2\pi$ ).

$$y(x) = \cos x$$

$$\therefore y'(x) = -\sin x$$

For SPs, f'(x) = 0:

$$-\sin x = 0$$

$$\therefore$$
  $\sin x = 0$ 



$$x = 0, \pi, 2\pi$$

$$x = 0$$
:

$$y(x) = \cos 0$$

$$\therefore y(0) = \cos 0$$

$$\Rightarrow$$
 y (0) = 1

$$x = \pi$$
:

$$y(x) = \cos x$$

$$\therefore \quad \mathsf{y} \; (\pi) \; = \; \cos \, \pi$$

$$\Rightarrow \quad y(\pi) = -1$$

$$x = 2\pi$$
:

$$y(x) = \cos x$$

$$\therefore y(2\pi) = \cos 2\pi$$

$$\Rightarrow$$
 y (2 $\pi$ ) = 1

| ×       | <u>-1</u> | 0 |   | π | 4 | 2π | 7 |
|---------|-----------|---|---|---|---|----|---|
| f ' (x) | +         | 0 | ı | 0 | + | 0  | ı |
| Slope   |           |   |   |   |   |    |   |

$$y'(x) = -\sin x$$
 $y'(-1) = -\sin (-1)$ 
 $y'(-1) = 0.841... > 0$ 
 $y'(x) = -\sin x$ 
 $y'(1) = -\sin (1)$ 
 $y'(1) = -0.841... < 0$ 
 $y'(x) = -\sin (1)$ 
 $y'(x) = -\sin (1)$ 

(0, 1) is a local max.,  $(\pi, -1)$  is a local min. and  $(2\pi, 1)$  is a local max.

Find the x - coordinates of the stationary points of

$$R(x) = x + \frac{9}{x}(x \neq 0).$$

$$R(x) = x + \frac{9}{x}$$

$$R(x) = x + 9x^{-1}$$

$$\therefore R'(x) = 1 - 9x^{-2}$$

For SPs, R'(x) = 0:

$$1 - 9 x^{-2} = 0$$

$$1 - \frac{9}{x^2} = 0$$

$$\Rightarrow \frac{9}{x^2} = 1$$

$$\Rightarrow$$
  $x^2 = 9$ 

$$\Rightarrow \qquad \qquad x = \pm 3$$

# CfE Higher Maths

pg. 256 - 258 Ex. 10C Q 1-5, 7-12