24 / 2 / 16

Exponentials and Logarithms - Lesson 3

Solving Exponential Inequations

LI

• Solve exponential inequations .

<u>SC</u>

- Logarithmic Rules.
- Using the log and In buttons on the calculator correctly.

Find the smallest integer value of n for which $3(10^n) > 40$.

Method 1

$$3 (10^{n}) > 40$$

⇒ $10^{n} > 40 / 3$

∴ $n (log_{10} 10) > log_{10} (40 / 3)$

⇒ $n (1) > log_{10} (40 / 3)$

⇒ $n > 1 . 12 . . .$

∴ $n = 2$

Method 2

$$3 (10^{n}) > 40$$
⇒
$$10^{n} > 40 / 3$$
∴
$$n (ln 10) > ln (40 / 3)$$
⇒
$$n > (ln (40 / 3)) / (ln 10)$$
⇒
$$n > 1 . 12 ...$$
∴
$$n = 2$$

Find the largest integer value of n for which $6^n < 20$.

$$6^{n} < 20$$

$$\therefore \quad n \ln 6 < \ln 20$$

$$\Rightarrow \quad n < (\ln 20) / (\ln 6)$$

$$\Rightarrow \quad 1.67... > n$$

$$\therefore \quad n = 1$$

Find the largest integer value of n for which $(0.2)^n > 0.007$.

$$(0.2)^n > 0.007$$

 \therefore n ln (0.2) > ln (0.007)

 \Rightarrow n < (ln 0 . 007) / (ln 0 . 2)

 \Rightarrow n < 3.08...

 \therefore n = 3

Find the smallest integer value of n for which $(0.6)^n < 0.63$.

$$(0.6)^n < 0.63$$

 \therefore n ln (0.6) < ln (0.63)

 $\Rightarrow \qquad \qquad n > (\ln 0.63) / (\ln 0.6)$

 \Rightarrow n > 0.90...

 \therefore n = 1

Find the smallest integer
 value of n such that:

$$(a)_{5}^{3} = 3^{n} > 100$$

$$(a)_{11}^{2} 2^{n} < 3000$$

(b)
$$_{11}$$
 2 n > 1 200

(b)
$$5^{n} < 15000$$

$$(c)_{18}(1.5)^{n} > 1000$$

(c)
$$(1.2)^n < 2$$

$$(d)_{4} (0.8)^{n} < 0.5$$

(d)₄
$$(0.6)^n > 0.08$$

$$(e)_{5}^{n} (0.4)^{n} < 0.02$$

$$(e)_{0}^{(0.7)^{n}} > 0.8$$