$7 / 12 / 16$
 Applications of Calculus - Lesson 3
 Rates of Change

LI

- Solve problems involving rates of change.

SC

- Chain Rule.

Differentiation is the study of rates of change; how quickly one variable changes with respect to another.

Usually, especially in real-life applications (in particular, physics), rates of change occur with respect to time.

Connections Between Displacement, Velocity and Acceleration

More specifically :

We will be interested in the derivative equations in this lesson.

Chain Rule with Independent Variable being Time

$$
\begin{aligned}
& \text { The Chain Rule for a function } y=f(g(t)), \\
& \text { writing } u=g(t) \text {, is, } \\
& \frac{d y}{d t}=\frac{d y}{d u} \times \frac{d u}{d t}
\end{aligned}
$$

Some important special cases of the Chain Rule include :

$$
\begin{aligned}
& \frac{d}{d t}(y(t))^{2}=2 y(t) \frac{d y}{d t} \\
& \frac{d}{d t}(y(t))^{3}=3(y(t))^{2} \frac{d y}{d t}
\end{aligned}
$$

Example 1

Relative to a suitable origin a particle moves along the x-axis such that its displacement, s metres, at time \dagger seconds, is given by,

$$
s(t)=t^{3}-7 t^{2}+8 t+5
$$

Find:
(a) how far from the origin the particle is at $t=0$.
(b) the velocity of the particle when $\dagger=2$.
(c) when the particle has zero velocity.
(a)

$$
\begin{aligned}
& s(t) \\
& \therefore \quad s(0)=t^{3}-7 t^{2}+8 t+5 \\
& \therefore \quad=(0)^{3}-7(0)+8(0)+5 \\
& \Rightarrow \quad s(0)=5 m
\end{aligned}
$$

(b)

$$
\begin{array}{rlrl}
& & v(t) & =s^{\prime}(t) \\
& \therefore & v(t)=\frac{d}{d t}\left(t^{3}-7 t^{2}+8 t+5\right) \\
\Rightarrow & v(t) & =3 t^{2}-14 t+8 \\
& \therefore & v(2)=3(2)^{2}-14(2)+8 \\
\Rightarrow & \quad v(2)=12-28+8 \\
\Rightarrow & \quad v(2)=-8 \mathrm{~m} / \mathrm{s}
\end{array}
$$

(c) Particle has zero velocity when $v(t)=0$:

$$
\begin{array}{rlrl}
& & v(t) & =0 \\
& \therefore & 0 & =3 t^{2}-14 t+8 \\
\Rightarrow & 0 & =(3 \dagger-2)(\dagger-4) \\
\Rightarrow & & \dagger & =2 / 3 \mathrm{~s}, 4 \mathrm{~s}
\end{array}
$$

Example 2
The volume of a sphere is increasing at a rate of $120 \mathrm{~cm}^{3}$.

Find how fast the radius is increasing when the radius is 4 cm .

The volume of a sphere is,

$$
V=\frac{4 \pi}{3} r^{3}
$$

As the radius changes over time, so will the volume;
so, they are both functions of time :

$$
V(t)=\frac{4 \pi}{3}(r(t))^{3}
$$

'Rate' means 'derivative'. So,

$$
\begin{aligned}
& \frac{d V}{d t}=\frac{d}{d t}\left(\frac{4 \pi}{3}(r(t))^{3}\right) \\
& \frac{d V}{d t}=\frac{4 \pi}{3} \frac{d}{d t} r^{3} \\
& \frac{d V}{d t}=\frac{4 \pi}{3}\left(3 r^{2} \frac{d r}{d t}\right) \\
& \frac{d V}{d t}=4 \pi r^{2} \frac{d r}{d t}
\end{aligned}
$$

We have that $\frac{d V}{d t}=120 \mathrm{~cm}^{3}$ when $r=4 \mathrm{~cm}$: We need to solve for $\frac{d r}{d t}$.

$$
\begin{aligned}
4 \pi(4)^{2} \frac{d r}{d t} & =120 \\
64 \pi \frac{d r}{d t} & =120 \\
\frac{d r}{d t} & =\frac{120}{64 \pi}
\end{aligned}
$$

$$
\frac{d r}{d t}=\frac{15}{8 \pi} \mathrm{~cm} / \mathrm{s}
$$

CfE Higher Maths

pg. 343-5 Ex. 16C Q1-5

