Proof by Contraposition and Proof by Contradiction

LI

- Know the contrapositive of a statement.
- Prove statements using Proof by Contraposition.
- Prove statements using Proof by Contradiction.

SC

- Logical reasoning.

The negation of A is $\operatorname{not} A$ '

The contrapositive of the statement $A \Rightarrow B$ is the statement 'not $B^{\prime} \Rightarrow$ 'not A '

The contrapositive of a statement is logically equivalent to the original statement; thus, to prove $A \Rightarrow B$, we can
prove 'not B ' \Rightarrow 'not A ' (often easier)
Proof by Contraposition (aka Proof by Contrapositive) is a proof technique that involves proving

$$
A \Rightarrow B \text { by proving } ' \text { not } B^{\prime} \Rightarrow \text { 'not } A^{\prime}
$$

Proof by Contradiction is a proof technique that involves proving $A \Rightarrow B$ by assuming A and 'not B ', then reaching a contradiction (usually, 'not A ')

Notation

\mathbb{N} - set of all natural numbers.
\mathbb{W} - set of all whole numbers.
\mathbb{Z} - set of all integers.
\mathbb{Q} - set of all rational numbers.
\mathbb{R} - set of all real numbers (all rational and irrational numbers).
\mathbb{C} - set of all complex numbers.

Example 1

Prove by contraposition that : n^{2} odd $\Rightarrow n$ odd $(n \in \mathbb{Z})$.
Assume the negation of ' n odd'; ie. assume that n is even.
Then $\exists k \in \mathbb{Z}$ such that $n=2 k$. Hence,

$$
\begin{aligned}
& & n^{2} & =(2 k)^{2} \\
\Rightarrow & & n^{2} & =4 k^{2} \\
\Rightarrow & & n^{2} & =2\left(2 k^{2}\right)
\end{aligned}
$$

As $k \in \mathbb{Z}, 2 k^{2} \in \mathbb{Z}$; hence n^{2} is even. So, n even $\Rightarrow n^{2}$ even.

$$
\text { By contraposition, } \mathrm{n}^{2} \text { odd } \Rightarrow \mathrm{n} \text { odd }
$$

Example 2

Prove by contraposition: $x^{2}-6 x+5$ even $\Rightarrow x$ odd $(x \in \mathbb{Z})$.
Assume the negation of ' x odd'; ie. assume that x is even.
Then $\exists k \in \mathbb{Z}$ such that $x=2 k$. Hence,

$$
\begin{aligned}
& x^{2}-6 x+5 & =(2 k)^{2}-6(2 k)+5 \\
\Rightarrow \quad & x^{2}-6 x+5 & =4 k^{2}-12 k+4+1 \\
\Rightarrow \quad & x^{2}-6 x+5 & =2\left(2 k^{2}-6 k+2\right)+1
\end{aligned}
$$

As $k \in \mathbb{Z}, 2 k^{2}-6 k+2 \in \mathbb{Z}$; hence $x^{2}-6 x+5$ is odd.
So, x even $\Rightarrow x^{2}-6 x+5$ odd.

$$
\text { By contraposition, } x^{2}-6 x+5 \text { even } \Rightarrow x \text { odd }
$$

Example 3

Prove by contradiction: $\sqrt{2}$ is irrational.
Assume that $\sqrt{2}$ is rational. Then $\exists a, b \in \mathbb{Z}(b \neq 0)$ such that,

$$
\sqrt{2}=\frac{a}{b}
$$

where it can be assumed that a and b have no common factors; if they did, they can be cancelled out. Then,

$$
\begin{array}{ll}
& a^{2}=2 b^{2} \Rightarrow a^{2} \text { is even } \Rightarrow a \text { is even } \\
\therefore & \\
\Rightarrow & a=2 k(k \in \mathbb{Z}) \\
\Rightarrow & b^{2}=2 k^{2}=2 b^{2} \Rightarrow b^{2} \text { is even } \Rightarrow b \text { is even }
\end{array}
$$

Hence, both a and b are even; but this contradicts the fact that a and b were assumed to have no common factors. Hence, the starting assumption that $\sqrt{2}$ is rational is false.

By contradiction, $\sqrt{2}$ is irrational

Example 4

Prove by contradiction: x irrational $\Rightarrow x+3$ irrational.

Assume that $x+3$ is rational. Then $\exists a, b \in \mathbb{Z}(b \neq 0)$
such that,

$$
\begin{aligned}
& & x+3 & =\frac{a}{b} \\
& \therefore & x & =\frac{a}{b}-3 \\
& \Rightarrow & x & =\frac{a-3 b}{b}
\end{aligned}
$$

As $a, b \in \mathbb{Z}(b \neq 0), a-3 b \in \mathbb{Z}$; hence, $x \in \mathbb{Q}$, contradicting the assumption that x is irrational.

$$
\text { By contradiction, } x \text { irrational } \Rightarrow x+3 \text { irrational }
$$

Example 5

Prove by contradiction: $4+7 \sqrt{3}$ is irrational. You may assume that $\sqrt{3}$ is irrational.

Assume that $4+7 \sqrt{3}$ is rational. Then $\exists a, b \in \mathbb{Z}(b \neq 0)$ such that,

$$
\begin{aligned}
& & 4+7 \sqrt{3} & =\frac{a}{b} \\
& \therefore & 7 \sqrt{3} & =\frac{a}{b}-4 \\
& \Rightarrow & 7 \sqrt{3} & =\frac{a-4 b}{b} \\
& \Rightarrow & \sqrt{3} & =\frac{a-4 b}{7 b}
\end{aligned}
$$

As $a, b \in \mathbb{Z}, a-4 b, 7 b \in \mathbb{Z}(7 b \neq 0)$; hence, $\sqrt{3} \in \mathbb{Q}$, contradicting the assumption that $\sqrt{3}$ is irrational.

$$
\text { By contradiction, } 4+7 \sqrt{3} \text { is irrational }
$$

Questions

Prove by contraposition:

1) n^{2} even $\Rightarrow n$ even $(n \in \mathbb{Z})$.
2) $x^{3}+1$ even $\Rightarrow x \operatorname{odd}(x \in \mathbb{Z})$.
3) $x^{3}-3$ even $\Rightarrow x$ odd $(x \in \mathbb{Z})$.
4) $x^{2}+5 x<0 \Rightarrow x<0(x \in \mathbb{R})$.

Prove by contradiction :
5) n^{2} odd $\Rightarrow n$ odd $(n \in \mathbb{Z})$.
6) n^{2} even $\Rightarrow n$ even $(n \in \mathbb{Z})$.
7) x irrational $\Rightarrow x-8$ irrational.
8) $\sqrt{7}$ is irrational.
9) $13-9 \sqrt{7}$ is irrational (assume that $\sqrt{7}$ is irrational).

