

Further Proof Techniques - Lesson 3

Proof by Contraposition and Proof by Contradiction

LI

- Know the contrapositive of a statement.
- Prove statements using Proof by Contraposition.
- Prove statements using Proof by Contradiction.

<u>SC</u>

• Logical reasoning.

Notation

- $\mathbb N\,$ set of all natural numbers.
- $\mathbb W$ set of all whole numbers.
- $\ensuremath{\mathbb{Z}}$ set of all integers.
- $\mathbb Q\,$ set of all rational numbers.
- $\mathbb R$ set of all real numbers (all rational and irrational numbers).
- $\mathbb C$ set of all complex numbers.

Prove by contraposition that : $n^2 \text{ odd } \Rightarrow n \text{ odd } (n \in \mathbb{Z})$. Assume the negation of 'n odd'; i.e. assume that n is even. Then $\exists k \in \mathbb{Z}$ such that n = 2 k. Hence,

$$n^{2} = (2 \text{ k})^{2}$$

$$\Rightarrow \qquad n^{2} = 4 \text{ k}^{2}$$

$$\Rightarrow \qquad \underline{n^{2} = 2 (2 \text{ k}^{2})}$$
As $\text{k} \in \mathbb{Z}, 2 \text{ k}^{2} \in \mathbb{Z}$; hence n^{2} is even. So, n even $\Rightarrow n^{2}$ even.
By contraposition, n^{2} odd \Rightarrow n odd

Prove by contraposition : $x^2 - 6x + 5$ even $\Rightarrow x$ odd ($x \in \mathbb{Z}$). Assume the negation of 'x odd'; i.e. assume that x is even. Then $\exists k \in \mathbb{Z}$ such that x = 2 k. Hence, $x^2 - 6x + 5 = (2 k)^2 - 6 (2 k) + 5$ $\Rightarrow x^2 - 6x + 5 = 4 k^2 - 12 k + 4 + 1$ $\Rightarrow x^2 - 6x + 5 = 2 (2 k^2 - 6 k + 2) + 1$ As $k \in \mathbb{Z}$, $2 k^2 - 6 k + 2 \in \mathbb{Z}$; hence $x^2 - 6x + 5$ is odd.

So, x even \Rightarrow x² - 6 x + 5 odd.

By contraposition, $x^2 - 6x + 5$ even $\Rightarrow x$ odd

Prove by contradiction : $\sqrt{2}$ is irrational.

Assume that $\sqrt{2}$ is rational. Then $\exists a, b \in \mathbb{Z}$ (b \neq 0) such that,

$$\sqrt{2} = \frac{a}{b}$$

where it can be assumed that a and b have no common factors; if they did, they can be cancelled out. Then,

 $a^{2} = 2b^{2} \Rightarrow a^{2} \text{ is even } \Rightarrow \underline{a \text{ is even}}$ $\therefore \qquad a = 2k \ (k \in \mathbb{Z})$ $\Rightarrow \qquad 4k^{2} = 2b^{2}$ $\Rightarrow \qquad b^{2} = 2k^{2} \Rightarrow b^{2} \text{ is even } \Rightarrow \underline{b \text{ is even}}$

Hence, both a and b are even; but this contradicts the fact that a and b were assumed to have no common factors. Hence, the starting assumption that $\sqrt{2}$ is rational is false.

By contradiction, $\sqrt{2}$ is irrational

Prove by contradiction: x irrational \Rightarrow x + 3 irrational.

Assume that x + 3 is rational. Then $\exists a, b \in \mathbb{Z}$ (b $\neq 0$) such that,

$$x + 3 = \frac{a}{b}$$

$$\therefore \qquad x = \frac{a}{b} - 3$$

$$\Rightarrow \qquad x = \frac{a - 3b}{b}$$
As $a, b \in \mathbb{Z}$ ($b \neq 0$), $a - 3b \in \mathbb{Z}$; hence, $x \in \mathbb{Q}$, contradicting the assumption that x is irrational.
By contradiction, x irrational $\Rightarrow x + 3$ irrational

Prove by contradiction : $4 + 7\sqrt{3}$ is irrational. You may assume that $\sqrt{3}$ is irrational.

Assume that $4 + 7\sqrt{3}$ is rational. Then $\exists a, b \in \mathbb{Z}$ (b $\neq 0$) such that,

$$4 + 7\sqrt{3} = \frac{a}{b}$$

$$\therefore \qquad 7\sqrt{3} = \frac{a}{b} - 4$$

$$\Rightarrow \qquad 7\sqrt{3} = \frac{a - 4b}{b}$$

$$\Rightarrow \qquad \sqrt{3} = \frac{a - 4b}{7b}$$

 \Rightarrow

As $a, b \in \mathbb{Z}$, $a - 4b, 7b \in \mathbb{Z}$ (7 $b \neq 0$); hence, $\sqrt{3} \in \mathbb{Q}$, contradicting the assumption that $\sqrt{3}$ is irrational.

By contradiction, $4 + 7\sqrt{3}$ is irrational

