$30 / 11 / 17$

Unit 2 : Proof by Mathematical Induction - Lesson 3

Mathematical Induction 3
 (Inequalities)

LI

- Use Proof by Mathematical Induction to solve problems involving inequalities.

SC

- Algebra.

Proof by Mathematical Induction

The Principle of Mathematical Induction (PMI) states that, to prove a statement $(P(n))$ about an infinite set of natural numbers:

- Prove the Base Case: $P\left(n_{0}\right)$ is true.
- Prove the Inductive Step :
$P(k)$ true $\Rightarrow P(k+1)$ true.
Then $P(n)$ is true $\forall n \geq n_{0}$.

Usually, $n_{0}=1$; then we would state the conclusion as ' $P(n)$ is true $\forall n \in \mathbb{N}^{\prime}$.

Example 1

Prove by induction that $n!>5^{n}$ for all $n \geq 12$.

$$
P(n): n!>5^{n}
$$

Base Case

$$
\begin{aligned}
& \text { LHS }=12!=479001600 \\
& \text { RHS }=5^{12}=244140625
\end{aligned}
$$

As LHS > RHS, P (12) is true

Inductive Step

Assume $P(k)$ is true for some natural number $k \geq 12$, i.e. assume that:

$$
\begin{aligned}
& \mathrm{k}!>5^{\mathrm{k}} \longleftarrow \begin{array}{l}
\text { Inductive } \\
\text { Hypothesis }
\end{array} \\
& \begin{array}{|c|}
\hline \text { RTP statement } \\
(k+1)!>5^{k+1}
\end{array} \\
& (k+1)!=(k+1) \cdot k! \\
& >(\mathrm{k}+1) \cdot 5^{\mathrm{k}} \\
& >5.5^{k} \\
& \therefore \quad(k+1)!>5^{k+1} \\
& \text { Hence, } P(k) \text { true } \Rightarrow P(k+1) \text { true }
\end{aligned}
$$

' $P(12)$ true' and ' $P(k)$ true $\Rightarrow P(k+1)$ true' together imply, by the PMI, that $P(n)$ is true $\forall n \geq 12$

Example 2

Prove by induction that $n^{2}>2 n(\forall n \geq 3)$.

$$
P(n): n^{2}>2 n
$$

Base Case

$$
\begin{aligned}
& \text { LHS }=3^{2}=9 \\
& \text { RHS }=2(3)=6 \\
& \text { As LHS }>\text { RHS, P (3) is true }
\end{aligned}
$$

Inductive Step

Assume $P(k)$ is true for some natural number $k \geq 3$, i.e. assume that :

$$
\mathrm{k}^{2}>2 \mathrm{k} \longleftarrow \begin{aligned}
& \text { Inductive } \\
& \text { Hypothesis }
\end{aligned}
$$

$$
\begin{gathered}
\text { RTP statement } \\
(k+1)^{2}>2(k+1)
\end{gathered}
$$

$$
(k+1)^{2}=(k+1) \cdot(k+1)
$$

$$
=k^{2}+2 k+1
$$

$$
>1+2 k+1 \quad \begin{gathered}
k \geq 3 \\
\Rightarrow k^{2} \geq 9>1
\end{gathered}
$$

$$
=2 k+2
$$

$$
\therefore \quad(k+1)^{2}>2(k+1)
$$

$$
\text { Hence, } P(k) \text { true } \Rightarrow P(k+1) \text { true }
$$

' $P(3)$ true' and $' P(k)$ true $\Rightarrow P(k+1)$ true' together imply, by the PMI, that $P(n)$ is true $\forall n \geq 3$

Example 3

Prove by induction that $n!>n^{2}(\forall n \geq 4)$.

$$
P(n): n!>n^{2}
$$

Base Case

$$
\begin{aligned}
& \text { LHS }=4!=24 \\
& \text { RHS }=4^{2}=16
\end{aligned}
$$

As LHS > RHS, P (4) is true

Inductive Step

Assume $P(k)$ is true for some natural number $k \geq 4$, i.e. assume that:

$$
\begin{aligned}
& k!>k^{2} \longleftarrow \begin{array}{l}
\text { Inductive } \\
\text { Hypothesis }
\end{array} \\
& \text { RTP statement } \\
& (k+1)!>(k+1)^{2} \\
& (k+1)!=(k+1) \cdot k! \\
& >(k+1) \cdot k^{2} \\
& >(k+1) \cdot(k+1) \\
& \therefore \quad(k+1)!>(k+1)^{2} \\
& k \geq 4 \\
& \Rightarrow k^{2} \geq 4 k \\
& =2 \mathrm{k}+2 \mathrm{k} \\
& >k+1 \\
& \text { Hence, } P(k) \text { true } \Rightarrow P(k+1) \text { true } \\
& \text { ' } P(4) \text { true' and ' } P(k) \text { true } \Rightarrow P(k+1) \text { true' together } \\
& \text { imply, by the PMI, that } P(n) \text { is true } \forall n \geq 4
\end{aligned}
$$

Example 4

Prove by induction that $2^{n}>n^{2}(\forall n \geq 5)$.

$$
P(n): 2^{n}>n^{2}
$$

Base Case

$$
\begin{aligned}
& \text { LHS }=2^{5}=32 \\
& \text { RHS }=5^{2}=25
\end{aligned}
$$

As LHS > RHS, P (5) is true
Inductive Step
Assume $P(k)$ is true for some natural number $k \geq 5$, i.e. assume that :

$$
\begin{aligned}
& 2^{k}>k^{2} \begin{array}{c}
\text { Inductive } \\
2^{k+1}>(k+1)^{\text {Hypothesis }} \text { statement }
\end{array} \\
& 2^{k+1}=2^{k} .2 \\
&> 2 k^{2} \\
&=k^{2}+k^{2} \\
& \geq k^{2}+5 k \\
&=k^{2}+2 k+3 k \\
&>k^{2}+2 k+1 \\
& \therefore \quad 2^{k+1}>(k+1)^{2} \\
& \therefore \text { Hence, } P(k) \text { true } \Rightarrow P(k+1) \text { true }
\end{aligned}
$$

' $P(5)$ true' and ' $P(k)$ true $\Rightarrow P(k+1)$ true' together imply, by the PMI, that $P(n)$ is true $\forall n \geq 5$

Questions (and 'Answers' !)

Prove by mathematical induction that :

1) $n^{2}>4 n(\forall n \geq 5)$.
2) $n!>3^{n}(\forall n \geq 7)$.
3) $6 n+6<2^{n}(\forall n \geq 6)$.
4) $3^{n}<(n+1)!(\forall n \geq 4)$.
5) $n!\leq n^{n}(\forall n \in \mathbb{N})$.
6) $n!>n^{3}(\forall n \geq 6)$.
