Intersections of Circles

LI

- Determine whether or not 2 circles intersect.
- If circles intersect, determine in how many places they meet. SC
- Equation of a circle.
- Distance formula.

Circles Meeting Circles

$$
\begin{aligned}
& d=\text { distance between centres } \\
& r_{1}, r_{2}=\text { radii of the } 2 \text { circles }
\end{aligned}
$$

$$
d<r_{1}+r_{2}: \text { Circles meet twice }
$$

Example

Determine whether or not the circles $x^{2}+y^{2}+2 x+4 y+4=0$ and $(x-3)^{2}+(y-3)^{2}=36$ intersect; if they intersect, state how many points of intersection there are.

We first find the centres and radii of both circles.

$$
\begin{gathered}
x^{2}+y^{2}+2 x+4 y+4=0 \\
x^{2}+y^{2}+2 g x+2 f y+c=0 \\
2 g=2 \Rightarrow g=1 \\
2 f=4 \Rightarrow f=2 \\
c=4
\end{gathered} \quad \begin{gathered}
\text { Centre : }(-g,-f)=\underline{(-2,-1)} \\
\text { Radius: } \sqrt{g^{2}+f^{2}-c} \\
=\sqrt{1^{2}+2^{2}-4} \\
r_{1}=1
\end{gathered}
$$

$$
(x-3)^{2}+(y-3)^{2}=36
$$

Centre: (3, 3)
Radius : $\underline{\boldsymbol{r}_{2}=6}$

$$
d=\sqrt{(3-(-2))^{2}+(3-(-1))^{2}}
$$

$$
d=\sqrt{5^{2}+4^{2}}
$$

$$
d=\sqrt{41} \approx 6.4
$$

$$
r_{1}+r_{2}=1+6
$$

$$
r_{1}+r_{2}=7
$$

As $d<r_{1}+r_{2}$, the circles meet in two places.

CfE Higher Maths

pg. 317 Ex. 14D All Q

