Gradients of Tangent Lines

LI

- Find gradients of tangent lines to curves.
- Find a missing coordinate given the gradient.

SC

- Differentiation.

The rate of change of $y=f(x)$ at $x=a$ (sometimes called the gradient of the curve at $x=a$) is equal to the gradient of the tangent line at $x=a$:

Common notations for the gradient of the curve $y=f(x)$ at $x=a$ are :
$f^{\prime}(a), y^{\prime}(a) \quad$ Lagrange Form
$\left(\frac{d y}{d x}\right)_{x=a}$

Useful Things to Remember (especially for non-calc.)

$$
\begin{aligned}
& x^{1 / 2}=\sqrt{x} \\
& x^{3 / 2}=x \sqrt{x} \\
& x^{5 / 2}=x^{2} \sqrt{x}
\end{aligned}
$$

Example 1

Find the gradient of the tangent to the curve $y=x^{2}-6 x+8$ at the point $(2,8)$.

$$
\begin{aligned}
& & y(x) & =x^{2}-6 x+8 \\
& \therefore & y^{\prime}(x) & =2 x-6 \\
& \therefore & y^{\prime}(2) & =2(2)-6 \\
& \Rightarrow & y^{\prime}(2) & =-2
\end{aligned}
$$

Example 2

A curve has equation $y=10 \sqrt{x}$.

Find the rate of change of y when $x=16$.

$$
\begin{aligned}
y(x) & =10 \sqrt{x} \\
y(x) & =10 x^{1 / 2} \\
\therefore \quad y^{\prime}(x) & =5 x^{-1 / 2} \\
\Rightarrow \quad y^{\prime}(x) & =\frac{5}{x^{1 / 2}} \\
\Rightarrow \quad y^{\prime}(x) & =\frac{5}{\sqrt{x}} \\
\therefore \quad y^{\prime}(16) & =\frac{5}{\sqrt{16}} \\
\Rightarrow \quad y^{\prime}(16) & =\frac{5}{4}
\end{aligned}
$$

Example 3

Find the gradient of the curve $y=\frac{4}{\sqrt{x}}$ at $x=4$.

$$
\begin{aligned}
y(x) & =\frac{4}{\sqrt{x}} \\
y(x) & =4 x^{-1 / 2} \\
\therefore \quad y^{\prime}(x) & =-2 x^{-3 / 2} \\
\Rightarrow \quad y^{\prime}(x) & =-\frac{2}{x^{3 / 2}} \\
\Rightarrow \quad y^{\prime}(x) & =-\frac{2}{x \sqrt{x}} \\
\therefore \quad y^{\prime}(4) & =-\frac{2}{4 \sqrt{4}} \\
\Rightarrow \quad y^{\prime}(4) & =-\frac{2}{8} \\
\Rightarrow \quad y^{\prime}(4) & =-\frac{1}{4}
\end{aligned}
$$

Example 4

A curve has equation $y=3 x^{2}-12 x+6$.
Find the x-coordinate of the point at which the tangent to the curve has gradient 12.

$$
\begin{aligned}
y(x) & =3 x^{2}-12 x+6 \\
\therefore \quad y^{\prime}(x) & =6 x-12
\end{aligned}
$$

Gradient $=12$ means $y^{\prime}(x)=12$. So,

$$
\begin{aligned}
& & 12 & =6 x-12 \\
\Rightarrow & & 6 x & =24 \\
\Rightarrow & & x & =4
\end{aligned}
$$

CfE Higher Maths

pg. 222-224 Ex. 9D Q1-10,18

Questions

1 For each of the following, find the gradient of the curve at the given point.
a

b

c

d

2 a Find the gradient of the tangent to the curve $y=x^{2}+4 x+2$ at the point where $x=3$.
b A curve has equation $y=5 x^{2}-15 x$. Find the gradient of the curve at the point where $x=2$.
c Given $f(x)=x^{3}-4 x^{2}+5 x+3$, find the rate of change of f when $x=1$.
d Find the gradient of the curve $y=(x+2)(x+5)$ at the point where $x=-3$
e Given $g(x)=6 x-x^{3}$, find the value of $g^{\prime}(-2)$.
f A curve has equation $y=4 x\left(x^{2}-2\right)$. Find $\frac{d y}{d x}$ when $x=-1$.

3 A curve has equation $y=\frac{2}{x}$ where $x \neq 0$. Find the gradient of the curve when
a $x=1$
b $\quad x=-3$
c $\quad x=\frac{1}{2}$

4 On a suitable domain, the function f is defined by $f(x)=3 \sqrt{x}$
a Find the gradient of the tangent to the curve $y=f(x)$ at the point where $x=4$.
b Find the rate of change of f when $x=9$.
c Evaluate $f^{\prime}\left(\frac{1}{16}\right)$.
5 The diagram shows part of the graph of the cubic function with equation $f(x)=x\left(x^{2}-4\right)$. A tangent to the graph is drawn at P.
Find the gradient of this tangent.
6 A curve has equation $y=\frac{5}{4 x^{2}}$ where $x \neq 0$.
Find the gradient of the curve at the point where $x=-10$.
7 a Find the x-coordinate of the point where the tangent to the curve $y=x^{2}+8 x-3$ has gradient 2.

b The function f is defined by $f(x)=5-4 x-x^{2}$. Determine the value of p, given that $f^{\prime}(p)=2$.
8 Find the coordinates of the point where the tangent to the curve $y=3 x^{2}-4 x+1$ has gradient -10 .
9 Find the x-coordinate of the point where the tangent to the curve $y=x^{4}+20 x$ has gradient-12.
10 a Determine the x-coordinates of the points where the tangent to the curve $y=\frac{1}{3} x^{3}-3 x^{2}+12 x+2$ has gradient 4.
b Determine the x-coordinates of the points where the tangent to the curve $y=x^{3}+2 x^{2}-7 x+1$ has gradient -3.
18 Find the range of values of x for which the gradient of the curve $y=x^{3}+x^{2}-5 x+2$ is greater than 3 .

Answers

$\mathbf{1}$	\mathbf{a}	4
	\mathbf{b}	-2
	\mathbf{c}	2
	\mathbf{d}	3
$\mathbf{2}$	\mathbf{a}	10
	\mathbf{b}	5
	\mathbf{c}	0
	\mathbf{d}	1
	\mathbf{e}	-6
	\mathbf{f}	4
$\mathbf{3}$	\mathbf{a}	-2
	\mathbf{b}	$-\frac{2}{9}$
	\mathbf{c}	-8

$$
\left.\begin{array}{lll}
\mathbf{4} & \mathbf{a} & \frac{3}{4} \\
& \mathbf{b} & \frac{1}{2} \\
& \text { c } & 6 \\
\mathbf{5} & -1 & \\
\mathbf{6} & \frac{1}{400} \\
7 & \mathbf{a} & -3 \\
& \mathbf{b} & -3 \\
\mathbf{8} & (-1,8) \\
\mathbf{9} & -2 & \\
\mathbf{1 0} & \mathbf{a} & x
\end{array}\right)=2 .
$$

$18 x<-2$ and $x>\frac{4}{3}$

