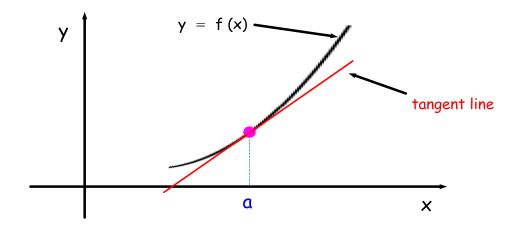
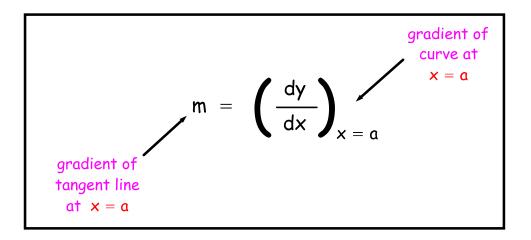
Differential Calculus - Lesson 3


Gradients of Tangent Lines

LI


- Find gradients of tangent lines to curves.
- Find a missing coordinate given the gradient.

<u>SC</u>

• Differentiation.

The rate of change of y = f(x) at x = a (sometimes called the gradient of the curve at x = a) is equal to the gradient of the tangent line at x = a:

Common notations for the gradient of the curve y = f(x) at x = a are:

$$\left(\frac{dy}{dx}\right)_{x=a}$$
 Leibniz Form

Useful Things to Remember (especially for non-calc.)

$$x^{1/2} = \sqrt{x}$$

$$x^{3/2} = x \sqrt{x}$$

$$x^{5/2} = x^2 \sqrt{x}$$

Example 1

Find the gradient of the tangent to the curve $y = x^2 - 6x + 8$ at the point (2, 8).

$$y(x) = x^2 - 6x + 8$$

$$\therefore$$
 y'(x) = 2x - 6

$$\therefore$$
 y'(2) = 2(2) - 6

$$\Rightarrow$$
 $y'(2) = -2$

Example 2

A curve has equation $y = 10 \sqrt{x}$.

Find the rate of change of y when x = 16.

$$y(x) = 10\sqrt{x}$$

$$y(x) = 10 x^{1/2}$$

$$\therefore$$
 y'(x) = $5 x^{-1/2}$

$$\Rightarrow y'(x) = \frac{5}{x^{1/2}}$$

$$\Rightarrow$$
 y'(x) = $\frac{5}{\sqrt{x}}$

$$\therefore \quad y'(16) = \frac{5}{\sqrt{16}}$$

$$\Rightarrow y'(16) = \frac{5}{4}$$

Example 3

Find the gradient of the curve $y = \frac{4}{\sqrt{x}}$

at x = 4.

$$y(x) = \frac{4}{\sqrt{x}}$$

$$y(x) = 4x^{-1/2}$$

$$\therefore$$
 y'(x) = -2x^{-3/2}

$$\Rightarrow y'(x) = -\frac{2}{x^{3/2}}$$

$$\Rightarrow$$
 y'(x) = $-\frac{2}{x\sqrt{x}}$

:
$$y'(4) = -\frac{2}{4\sqrt{4}}$$

$$\Rightarrow$$
 y'(4) = $-\frac{2}{8}$

$$\Rightarrow y'(4) = -\frac{1}{4}$$

Example 4

A curve has equation $y = 3x^2 - 12x + 6$.

Find the x - coordinate of the point at which the tangent to the curve has gradient 12.

$$y(x) = 3x^2 - 12x + 6$$

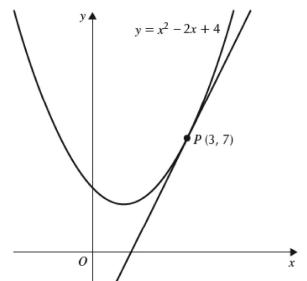
 $y'(x) = 6x - 12$

Gradient = 12 means y'(x) = 12.50,

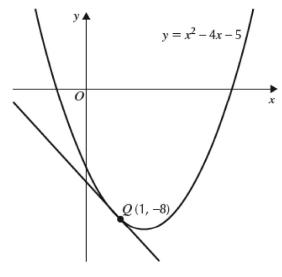
$$12 = 6 \times - 12$$

$$\Rightarrow$$
 6 x = 24

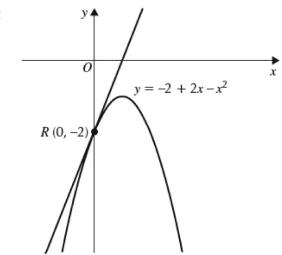
$$\Rightarrow$$
 $x = 4$

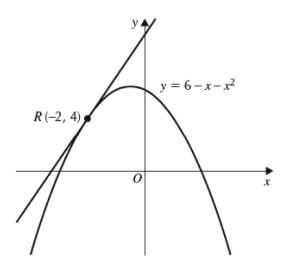

CfE Higher Maths

pg. 222 - 224 Ex. 9D Q 1 - 10, 18


Questions

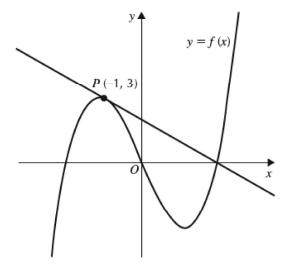
1 For each of the following, find the gradient of the curve at the given point.


a


b

C

d



- 2 a Find the gradient of the tangent to the curve $y = x^2 + 4x + 2$ at the point where x = 3.
 - **b** A curve has equation $y = 5x^2 15x$. Find the gradient of the curve at the point where x = 2.
 - c Given $f(x) = x^3 4x^2 + 5x + 3$, find the rate of change of f when x = 1.
 - d Find the gradient of the curve y = (x + 2)(x + 5) at the point where x = -3
 - e Given $g(x) = 6x x^3$, find the value of g'(-2).
 - **f** A curve has equation $y = 4x(x^2 2)$. Find $\frac{dy}{dx}$ when x = -1.

- 3 A curve has equation $y = \frac{2}{x}$ where $x \neq 0$. Find the gradient of the curve when
 - \mathbf{a} x = 1

b x = -3

- $x = \frac{1}{2}$
- 4 On a suitable domain, the function f is defined by $f(x) = 3\sqrt{x}$
 - a Find the gradient of the tangent to the curve y = f(x) at the point where x = 4.
 - **b** Find the rate of change of f when x = 9.
 - c Evaluate $f'(\frac{1}{16})$.
- The diagram shows part of the graph of the cubic function with equation f(x) = x(x² 4).
 A tangent to the graph is drawn at P.
 Find the gradient of this tangent.
- 6 A curve has equation $y = \frac{5}{4x^2}$ where $x \neq 0$. Find the gradient of the curve at the point where x = -10.

- 7 **a** Find the *x*-coordinate of the point where the tangent to the curve $y = x^2 + 8x 3$ has gradient 2.
 - b The function f is defined by $f(x) = 5 4x x^2$. Determine the value of p, given that f'(p) = 2.
- 8 Find the coordinates of the point where the tangent to the curve $y = 3x^2 4x + 1$ has gradient –10.
- 9 Find the *x*-coordinate of the point where the tangent to the curve $y = x^4 + 20x$ has gradient -12.
- 10 a Determine the *x*-coordinates of the points where the tangent to the curve $y = \frac{1}{3}x^3 3x^2 + 12x + 2$ has gradient 4.
 - **b** Determine the x-coordinates of the points where the tangent to the curve $y = x^3 + 2x^2 7x + 1$ has gradient -3.
- **18** Find the range of values of x for which the gradient of the curve $y = x^3 + x^2 5x + 2$ is greater than 3.

Answers

- 1 a 4
 - **b** -2
 - **c** 2
 - **d** 3
- **2 a** 10
 - **b** 5
 - **c** 0
 - **d** 1
 - **e** -6
 - f 4
- **3** a −2
 - **b** $-\frac{2}{9}$
 - **c** -8

- 4 a $\frac{3}{4}$ b $\frac{1}{2}$ c 6
- 5 –1
- 6 $\frac{1}{400}$
- **7 a** −3
- **b** −3
- 8 (-1,8)
- 9 -2
- **10 a** x = 2
- x = 4**b** x = -2
- $x = \frac{2}{3}$
- 18 x < -2 and $x > \frac{4}{3}$