7 / 11 / 17
 Unit 2 : Sequences and Series - Lesson 3

Geometric Sequences

LI

- Know what a Geometric Sequence is.
- Find the $n^{\text {th }}$ term formula for a geometric sequence.
- Solve problems involving geometric sequences.

SC

- Arithmetic of real numbers.

A geometric sequence is a sequence where the ratio of any two successive terms is constant :

$$
\frac{u_{n+1}}{u_{n}}=r \quad(\text { for all } n \in \mathbb{N})
$$

(r is called the common ratio)

The $n^{\text {th }}$ term of a geometric sequence is:

$$
u_{n}=a r^{n-1}
$$

Example 1

Show that $2,8,16, \ldots$ cannot be the first three terms of a geometric sequence.

$$
\begin{array}{r}
8 \div 2=4 \\
16 \div 8=2
\end{array}
$$

As successive ratios are not constant, these 3 numbers cannot form the start of a geometric sequence.

Example 2

Find the $\mathrm{n}^{\text {th }}$ term formula for the geometric sequence that begins 6, 30, 150,

The first term is 6; the common ratio is $30 \div 6=5$. So,

$$
\begin{aligned}
& u_{n} & =a r^{n-1} \\
\therefore & u_{n} & =6 \cdot 5^{n-1}
\end{aligned}
$$

Example 3

A geometric sequence has third term 12 and eighth term 3/8.

Find the $\mathrm{n}^{\text {th }}$ term formula and also the $10^{\text {th }}$ term.

$$
\begin{aligned}
& u_{3}=12 \quad u^{u_{n}=a r^{n-1}} \\
& 12=a r^{3-1} \\
& 3 / 8=a r^{8-1} \\
& \Rightarrow \quad a r^{2}=12 \quad \Rightarrow \quad a r^{7}=3 / 8 \\
& a r^{2}=12 \\
& a r^{7}=3 / 8 \\
& \therefore \quad r^{5}=3 / 8 \div 12 \\
& \Rightarrow \quad r^{5}=1 / 32 \\
& \Rightarrow \quad r=1 / 2 \\
& a r^{2}=12 \\
& \Rightarrow \quad a(1 / 4)=12 \\
& \Rightarrow \quad \underline{a=48} \\
& u_{n}=a r^{n-1} \\
& \therefore \quad u_{n}=48 \cdot(1 / 2)^{n-1} \\
& \mathrm{u}_{10}=48 \cdot(1 / 2)^{10-1} \\
& \Rightarrow \quad u_{10}=3 / 32
\end{aligned}
$$

Example 4

Given a geometric sequence $6,12,24,48, \ldots$, find the value of n for which $u_{n}=49152$.

$$
\begin{array}{rlrl}
& u_{n} & =a r^{n-1} \\
\therefore & u_{n} & =6.2^{n-1} \\
\hline
\end{array}
$$

As $\mathrm{u}_{\mathrm{n}}=49152$ we have,

$$
\begin{array}{rlrl}
& & 6.2^{n-1} & =49152 \\
\Rightarrow & 2^{n-1} & =8192 \\
\therefore & & (n-1) \ln 2 & =\ln 8192 \\
\Rightarrow & n-1 & =(\ln 8192) /(\ln 2) \\
\Rightarrow & & n-1 & =13 \\
\Rightarrow & & n=14
\end{array}
$$

Example 5

Show that $e^{2 x}, e^{5 x}, e^{8 x}, \ldots$ could be the first three terms of a geometric sequence.

Hence show that $u_{n}=e^{f(n) \times}$, stating explicitly the function $f(n)$.

$$
\begin{aligned}
& e^{5 x} \div e^{2 x}=e^{3 x} \\
& e^{8 x} \div e^{5 x}=e^{3 x}
\end{aligned}
$$

As successive ratios are constant ($r=e^{3 x}$), these 3 numbers could be the first three terms of a geometric sequence.

$$
\begin{array}{rlrl}
& & u_{n} & =a r^{n-1} \\
\therefore & & u_{n} & =e^{2 x} \cdot\left(e^{3 x}\right)^{n-1} \\
\Rightarrow & & u_{n} & =e^{2 x} \cdot e^{3 \times(n-1)} \\
\Rightarrow & & u_{n}=e^{2 x} \cdot e^{3 \times n} \cdot e^{-3 x} \\
\Rightarrow & & u_{n}=e^{3 \times n-x} \\
\Rightarrow & & u_{n}=e^{(3 n-1) x} \\
(f(n) & =3 n-1)
\end{array}
$$

$$
\begin{array}{r}
\text { AH Maths - MiA }\left(2^{\text {nd }}\right. \text { Edn.) } \\
\cdot \text { pg. 156-8 Ex. 9.3 } Q 1,2,5 \text {, } \\
6 \text { b, c, 8, } 11 .
\end{array}
$$

Ex. 9.3

1 For each of these geometric sequences i identify a and r ii find an expression for the nth term.
a $1,4,16,64, \ldots$
b $3,-12,48,-192$
c $1536,768,384,192, \ldots$
d $3645,-1215,405,-135, \ldots$
e $1,0.1,0.01,0.001, \ldots$
f $\frac{1}{2}, \frac{3}{8}, \frac{9}{32}, \frac{27}{128}, \ldots$
g $0.12,0.048,0.0192,0.00768, \ldots$ h $18.4,20.24,22.264,24.4904, \ldots$

2 a The first term of a geometric sequence is 3 . The common ratio is 6 . Calculate the sixth term.
b In a geometric sequence, $u_{1}=0.5, u_{2}=0.3$. What is term 5 ?
c In a geometric sequence, $u_{2}=12, u_{3}=24$. Calculate u_{10}.
5 a The first term of a geometric sequence is 3 . The 10 th term is 1536.
Calculate the common ratio.
b The common ratio of a geometric sequence is 0.7 and the 23 rd term is 0.4
Calculate the first term correct to the nearest whole number.
6 b The terms $a, a+d, a+x d$ form the start of a geometric sequence.
i Express x in terms of a and d.
ii Express the common ratio in terms of x.
c $a, a r, a+2 d$ are the first three terms of a geometric sequence.
Given that $r>0$, express r in terms of a and d.
8 A gearing system works best when the number of teeth on the gear train form a geometric sequence. The terms, of course, must be rounded to the nearest whole number.
a Calculate the unknown number of teeth in each of these three-wheel gear systems.
i 8 teeth, x teeth, 18 teeth ii 14 teeth, 21 teeth, y teeth
iii z teeth, 14 teeth, 49 teeth
b A certain type of gear has four wheels in the train. Again, working to the nearest whole number, calculate the unknown terms in each of the trains.
i $16, x, y, 54 \quad$ ii $20,30, p, q \quad$ iii $25,30, a, b$
11 In an experiment, a ball of radius 1 cm , made of 'super rubber', is dropped from a height. On its first bounce it reached the height of 8 m . On its second it reached the height of 6.4 m .
a Successive bounces form a geometric sequence.
Calculate the height reached on the seventh bounce (to 1 dp).
b The ball effectively stops when the bounce is less than the radius of the ball $(1 \mathrm{~cm})$. After how many bounces will this happen?

Answers to AH Maths (MiA), pg. 156-8, Ex. 9.3

$$
\begin{array}{lll}
1 & \text { a } & 1,4 \\
\text { b } & \text { i } 3,-4 & \text { ii } u_{n}=a r^{n-1}=1 \times 4^{n-1} \\
\text { c } & \text { i } 1536, \frac{1}{2} & \text { ii } u_{n}=3 \times(-4)^{n-1} \\
\text { d } & \text { i } 3645,-\frac{1}{3} & \text { ii } u_{n}=3645 \times\left(\frac{1}{2}\right)^{n-1} \\
\text { e } & \text { i } 1, \frac{1}{10} & \text { ii } u_{n}=1 \times\left(\frac{1}{3}\right)^{n-1} \\
\text { f } & \text { i } \frac{1}{2}, \frac{3}{4} & \text { ii } u_{n}=\frac{1}{2} \times\left(\frac{3}{4}\right)^{n-1} \\
\text { g } & \text { i } 0.12,0.4 & \text { ii } u_{n}=0.12 \times(0.4)^{n-1} \\
\text { h } & \text { i } 18.4,1.1 & \text { ii } u_{n}=18.4 \times 1.1^{n-1} \\
2 & \text { a } & 23328
\end{array} \quad \text { b } \frac{81}{1250} \begin{array}{lc}
\text { c } & 3072
\end{array} \quad
$$

$\begin{array}{lllll}5 & \text { a } & 2 & \text { b } & 1023\end{array}$
$6 \mathrm{~b} \quad$ i $x=\frac{2 a+d}{a} \quad$ ii $r=x-1 \quad$ c $\quad r=\sqrt{\frac{2 d+a}{a}}$
8 a i 12 ii 31 or 32 iii 4
b i 24,36 ii 45,67 or 68 iii 36,43
11 a 2.1 m
b 31st bounce

