16 / 9 / 16

Functions - Lesson 3

Functions - Inverses

LI

- Know what the inverse of a functions is.
- Know that a function does not always have an inverse.
- Know the graphical interpretation for a function to have an inverse.
- Find the inverse of a function.

SC

- Solving linear, quadratic and cubic equations.

Suppose that all the inputs and all the outputs of a function $f: A \longrightarrow B$ have been worked out.

If every element of dom f is matched to exactly one element of ran f and every element of ran f is matched to exactly one element of $\operatorname{dom} f$, then we say that there is 1-1 ('one to one') correspondence between dom f and ran f.

Another way of expressing this is as follows. If $f: A \longrightarrow B$ and $g: B \longrightarrow A$ are two functions satisfying the property that

$$
f(g(x))=x \quad \text { or } \quad g(f(x))=x
$$

then we say that g is the inverse of f and write $g=f^{-1}$.
A function only has one inverse.
We also say that f is the inverse of g and write $f=g^{-1}$.

WARNING: The '-1' is not an index (power), just a special way of indicating the inverse

Graphical Interpretation of the Inverse

To sketch the graph of the inverse of a function, reflect the graph in the line $y=x$

If $f(a)=b$, then $f^{-1}(b)=a$ and vice versa

Knowing When a Function Does Not Have an Inverse

From the graphical interpretation, it is clear that a function will not have an inverse when at least $2 x$-values give the same y-value.

For example, for the function $f(x)=x^{2}$ - with domain \mathbb{R}, every y-value (except for 0) has $2 x$-values matching to it. This means that there is no inverse for the function $f(x)=x^{2}$.

However, restricting the function $y=x^{2}$ to non-negative values of x makes each x-value match up to exactly one y - value and vice versa. So, by restricting the domain to nonnegative x-values, the function $y=x^{2}$ will have an inverse.

Procedure for Working Out the Inverse of a Function

- Write the function in the form $y=f(x)$.
- Swap the letters x and y.
- Solve for y.
- Write $f^{-1}(x)=$ the result obtained in the last bullet point.

Example 1
If $f(x)=3 x+7$, find f^{-1}.

$$
y=3 x+7
$$

Interchange x and y :

$$
\begin{aligned}
x & =3 y+7 \\
x-7 & =3 y \\
y & =\frac{x-7}{3} \\
\therefore \quad f^{-1}(x) & =\frac{x-7}{3}
\end{aligned}
$$

Example 2
If $p(x)=2 x^{3}-9$, find p^{-1}.

$$
y=2 x^{3}-9
$$

Interchange x and y :

$$
\begin{aligned}
x & =2 y^{3}-9 \\
x+9 & =2 y^{3} \\
y^{3} & =\frac{x+9}{2}
\end{aligned}
$$

$$
y=\sqrt[3]{\frac{x+9}{2}}
$$

$$
\therefore \mathrm{p}^{-1}(x)=\sqrt[3]{\frac{x+9}{2}}
$$

Example 3

Find the inverse of $r(x)=x^{2}+6(x \geq 0)$.
Sketch the graphs of $y=r(x)$ and $y=r^{-1}(x)$.

$$
y=x^{2}+6
$$

Interchange x and y :

$$
\begin{aligned}
& x=y^{2}+6 \\
& x-6=y^{2} \\
& y=\sqrt{x-6} \\
& \therefore \quad r^{-1}(x)=\sqrt{x-6} \\
& \begin{array}{l}
y=r(x)=x^{2}+6 \\
y=r^{-1}(x)=\sqrt{x-6}
\end{array}
\end{aligned}
$$

Find the inverses of these functions:

1) $f(x)=4 x^{3}+11$.
2) $g(x)=(2 x+1)^{3}$.
3) $h(x)=(4-7 x)^{1 / 3}$.

$$
\begin{aligned}
& f^{-1}(x)=\sqrt[3]{\frac{x-11}{4}} \\
& g^{-1}(x)=\frac{x^{1 / 3}-1}{2} \\
& h^{-1}(x)=\frac{4-x^{3}}{7}
\end{aligned}
$$

CfE Higher Maths

pg. 89-90 Ex. 4C All Q

