Derivatives of Reciprocal Trigonometric Functions and $\operatorname{Tan} x$

LI

- Know the 3 Reciprocal Trigonometric Functions and their derivatives.
- Know the derivative of $\tan x$.
- Prove the derivatives of the above 4 functions.
- Learn 2 new trigonometric identities.

SC

- Chain and Quotient Rules.

Reciprocal Trigonometric Functions and Their Derivatives

$$
\begin{gathered}
\sec x \stackrel{\text { def }}{=} \frac{1}{\cos x} \\
\begin{array}{c}
\operatorname{cosec} x \stackrel{d e f}{=} \frac{1}{\sin x}
\end{array} \\
\begin{array}{ll}
\cot x \stackrel{d}{d x} \sec x=\sec x \tan x \\
= & \text { • } \frac{d}{d x} \operatorname{cosec} x=-\operatorname{cosec} x \cot x \\
\sin x
\end{array} \\
\begin{array}{lll}
\text { 'sec' is short for 'secant' } \\
\text { 'cosec' } & \text { '' } & \text { 'cosecant' } \\
\text { 'cot' } & \text { '. } & \text { 'cotangent' }
\end{array}
\end{gathered}
$$

Derivative of $\operatorname{Tan} x$

$$
\text { - } \frac{d}{d x} \tan x=\sec ^{2} x
$$

$$
\begin{aligned}
& \text { General Form of Derivatives - Chain Rule } \\
& \frac{d}{d x} \sec f(x)=\sec f(x) \cdot \tan f(x) \cdot f^{\prime}(x) \\
& \frac{d}{d x} \operatorname{cosec} f(x)=-\operatorname{cosec} f(x) \cdot \cot f(x) \cdot f^{\prime}(x) \\
& \frac{d}{d x} \cot f(x)=-\operatorname{cosec}^{2} f(x) \cdot f^{\prime}(x) \\
& \frac{d}{d x} \tan f(x)=\sec ^{2} f(x) \cdot f^{\prime}(x)
\end{aligned}
$$

Example 1

Show that $\frac{d}{d x}(\operatorname{cosec} x)=-\operatorname{cosec} x \cot x$.
Let $y=\operatorname{cosec} x=\frac{1}{\sin x}$.

$$
\begin{aligned}
& f(x)=1, g(x)=\sin x \\
& f^{\prime}(x)=0, g^{\prime}(x)=\cos x \\
& y^{\prime}= \frac{f^{\prime} g-f g^{\prime}}{g^{2}} \\
& \therefore \quad y^{\prime}=\frac{0 \cdot \sin x-1 \cdot \cos x}{(\sin x)^{2}} \\
& \Rightarrow \quad y^{\prime}=\frac{-\cos x}{(\sin x)(\sin x)} \\
& \Rightarrow y^{\prime}=-\frac{1}{\sin x} \cdot \frac{\cos x}{\sin x} \\
& \Rightarrow y^{\prime}=-\operatorname{cosec} x \cot x
\end{aligned}
$$

Example 2

If $f(x)=\sec 7 x$, find $f^{\prime}(x)$.

$$
\begin{array}{rlrl}
& & f(x) & =\sec 7 x \\
\therefore & f^{\prime}(x) & =\sec 7 x \cdot \tan 7 x \cdot \frac{d}{d x}(7 x) \\
\Rightarrow & & f^{\prime}(x) & =7 \sec 7 x \cdot \tan 7 x
\end{array}
$$

Example 3

$$
\text { If } g(p)=\tan (9-5 p) \text {, find } g^{\prime}(p) .
$$

$$
g(p)=\tan (9-5 p)
$$

$$
\therefore \quad g^{\prime}(p)=\sec ^{2}(9-5 p) \cdot \frac{d}{d p}(9-5 p)
$$

$$
\Rightarrow \quad g^{\prime}(p)=-5 \sec ^{2}(9-5 p)
$$

Example 4

$$
\begin{aligned}
& \text { If } y=\cos (\cot x) \text {, find } y^{\prime} . \\
& \\
& \qquad y=\cos (\cot x) \\
& \Rightarrow \quad y^{\prime}=-\sin (\cot x) \cdot \frac{d}{d x}(\cot x) \\
& \Rightarrow \quad y^{\prime}=-\sin (\cot x) \cdot\left(-\operatorname{cosec}^{2} x\right) \\
& \Rightarrow \quad y^{\prime}=\operatorname{cosec}^{2} x \sin (\cot x)
\end{aligned}
$$

Example 5

If $y=\cos x \cot x$, find y^{\prime}.

$$
y=\cos x \cot x
$$

$$
\therefore \quad y^{\prime}=-\sin x \cdot \cot x+\cos x \cdot\left(-\operatorname{cosec}^{2} x\right)
$$

$$
\begin{array}{r}
\Rightarrow y^{\prime}=-\sin x \cot x-\cos x \operatorname{cosec}^{2} x \\
\left(y^{\prime}=-\cos x-\cot x \operatorname{cosec} x\right)
\end{array}
$$

AH Maths - MiA (2 ${ }^{\text {nd }}$ Edn.)
 - pg. 55-6 Ex. 4.8 All Q.

Ex. 4.8

1 Differentiate and simplify a $\operatorname{cosec} x \quad b \cot x$
2 Find the derivative of each of these.
a $\sec 2 x$
b $\tan 2 x$
c $\operatorname{cosec} 2 x$
d $\operatorname{cosec}(2 x+3)$
e $\sec \left(4-3 x^{2}\right)$
f $\cot 5 x$
g $\cot \left(x^{2}\right)$
h $\tan (1-17 x)$

3 Calculate $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in each case.
a $y=\sec x \tan x$
b $y=\cot (\tan x)$
c $y=\operatorname{cosec}(\sin x)$
d $y=\operatorname{cosec}^{2} 3 x$
e $y=\sec ^{2} x$
f $y=\tan ^{2} 4 x$
g $y=\sqrt{\sec x}$
h $y=\frac{1}{\sqrt{1+\operatorname{cosec} x}}$

4 Find $f^{\prime}(x)$ when
a $f(x)=\frac{x^{2}+x}{1+\cot x}$
b $f(x)=\frac{\cot x+\sec x}{\cot x-\sec x}$
c $f(x)=\frac{\sec x+\cot x}{x^{2}+2 x+1}$

5 Given that $f(x)=\sin ^{2} x \tan x$, show that $f^{\prime}\left(\frac{\pi}{4}\right)=2$.
6 a If $f(x)=\sin x \sec x$, show that $f^{\prime}\left(\frac{\pi}{3}\right)=4$.
b How might $f(x)$ have been simplified to make the problem easier?

Answers to AH Maths (MiA), pg. 55-6, Ex. 4.8

$$
\begin{aligned}
& 1 \text { a }-\cos x \operatorname{cosec}^{2} x \quad \text { b }-\operatorname{cosec}^{2} x \\
& 2 \text { a } 2 \sin 2 x \sec ^{2} 2 x \quad \text { b } 2 \sec ^{2} 2 x \\
& \text { c }-2 \cos 2 x \operatorname{cosec}^{2} 2 x \\
& \text { d }-2 \cos (2 x+3) \operatorname{cosec}^{2}(2 x+3) \\
& \text { e } \quad-6 x \sin \left(4-3 x^{2}\right) \sec ^{2}\left(4-3 x^{2}\right) \\
& \text { f }-5 \operatorname{cosec}^{2} 5 x \\
& \text { g } \quad-2 x \operatorname{cosec}^{2}\left(x^{2}\right) \\
& \text { h }-17 \sec ^{2}(1-17 x) \\
& 3 \text { a } \sec x \tan ^{2} x+\sec ^{3} x \\
& \text { b }-\operatorname{cosec}^{2}(\tan x) \sec ^{2} x \\
& \text { c }-\operatorname{cosec}(\sin x) \cot (\sin x) \cos x \\
& \text { d }-6 \operatorname{cosec}^{2} 3 x \cot 3 x \\
& \text { e } 2 \sec ^{2} x \tan x \\
& \text { f } 8 \tan 4 x \sec ^{2} 4 x \\
& \text { g } \frac{1}{2} \sqrt{\sec x} \cdot \tan x \\
& \text { h } \frac{1}{2}(1+\operatorname{cosec} x)^{-\frac{3}{2}} \operatorname{cosec} x \cot x \\
& 4 \text { a } \frac{(1+\cot x)(2 x+1)+\left(x^{2}+x\right) \operatorname{cosec}^{2} x}{(1+\cot x)^{2}} \\
& \text { b } \frac{2 \sec x\left(1+\operatorname{cosec}^{2} x\right)}{(\cot x-\sec x)^{2}} \\
& \text { c } \frac{(x+1)\left(\sec x \tan x-\operatorname{cosec}^{2} x\right)-2(\sec x+\cot x)}{(x+1)^{3}}
\end{aligned}
$$

$5 \mathrm{f}^{\prime}(x)=2 \sin x \cos x \tan x+\sin ^{2} x \sec ^{2} x$, hence result.
6 a $\quad \mathrm{f}^{\prime}(x)=\cos x \sec x+\sin x \sec x \tan x$
$=1+\sin x \sec x \tan x$ hence result.
b $\sin x \sec x=\tan x$

