20 / 6 / 17

Unit 1: Differential Calculus - Lesson 3

Derivatives of Reciprocal Trigonometric Functions and Tan x

LI

- Know the 3 Reciprocal Trigonometric Functions and their derivatives.
- Know the derivative of tan x.
- Prove the derivatives of the above 4 functions.
- Learn 2 new trigonometric identities.

<u>SC</u>

• Chain and Quotient Rules.

Reciprocal Trigonometric Functions and Their Derivatives

$$\sec x = \frac{1}{\cos x}$$

$$\sec x = \frac{1}{\cos x} \qquad \qquad \bullet \quad \frac{d}{dx} \sec x = \sec x \tan x$$

$$cosec x = \frac{1}{\sin x}$$

$$\csc x = \frac{1}{\sin x}$$
• $\frac{d}{dx} \csc x = -\csc x \cot x$

$$\cot x = \frac{\cos x}{\sin x}$$

$$\cot x \stackrel{def}{=} \frac{\cos x}{\sin x} \qquad \bullet \quad \frac{d}{dx} \cot x = -\csc^2 x$$

'sec' is short for 'secant'

'cosec' '' 'cosecant'
'cot' '' 'cotangent'

Derivative of Tan x

•
$$\frac{d}{dx} \tan x = \sec^2 x$$

General Form of Derivatives - Chain Rule

$$\frac{d}{dx} \sec f(x) = \sec f(x) \cdot \tan f(x) \cdot f'(x)$$

$$\frac{d}{dx} \csc f(x) = -\csc f(x) \cdot \cot f(x) \cdot f'(x)$$

$$\frac{d}{dx} \cot f(x) = -\csc^2 f(x) \cdot f'(x)$$

$$\frac{d}{dx} \tan f(x) = \sec^2 f(x) \cdot f'(x)$$

2 New Trigonometric Identities

$$\frac{\sin^2 x + \cos^2 x = 1}{\div \sin^2 x}$$

$$\frac{\sin^2 x}{\cos^2 x} + \frac{\cos^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} \left| \frac{\sin^2 x}{\sin^2 x} + \frac{\cos^2 x}{\sin^2 x} \right| = \frac{1}{\sin^2 x}$$

$$tan^2 x + 1 = sec^2 x$$

$$\frac{\sin^2 x}{\sin^2 x} + \frac{\cos^2 x}{\sin^2 x} = \frac{1}{\sin^2 x}$$

$$\tan^2 x + 1 = \sec^2 x
 \boxed{1 + \cot^2 x = \csc^2 x}$$

Show that $\frac{d}{dx}$ (cosec x) = - cosec x cot x.

Let
$$y = \csc x = \frac{1}{\sin x}$$
.

$$f(x) = 1$$
 , $g(x) = \sin x$

$$f(x) = 1$$
 , $g(x) = \sin x$
 $f'(x) = 0$, $g'(x) = \cos x$

$$y' = \frac{f'g - fg'}{g^2}$$

$$\therefore y' = \frac{0.\sin x - 1.\cos x}{(\sin x)^2}$$

$$\Rightarrow y' = \frac{-\cos x}{(\sin x)(\sin x)}$$

$$\Rightarrow$$
 $y' = -\frac{1}{\sin x} \cdot \frac{\cos x}{\sin x}$

$$\Rightarrow$$
 y' = - cosec x cot x

If
$$f(x) = \sec 7x$$
, find $f'(x)$.

$$f(x) = \sec 7x$$

$$\therefore f'(x) = \sec 7x \cdot \tan 7x \cdot \frac{d}{dx} (7x)$$

$$\Rightarrow$$
 f'(x) = 7 sec 7x . tan 7x

If
$$g(p) = \tan (9 - 5 p)$$
, find $g'(p)$.

$$g(p) = tan(9 - 5p)$$

$$g'(p) = sec^2(9 - 5p). \frac{d}{dp}(9 - 5p)$$

$$\Rightarrow$$
 g'(p) = -5 sec² (9 - 5 p)

If
$$y = \cos(\cot x)$$
, find y'.

$$y = cos(cot x)$$

$$\therefore y' = -\sin(\cot x) \cdot \frac{d}{dx} (\cot x)$$

$$\Rightarrow$$
 y' = - sin (cot x). (- cosec² x)

$$\Rightarrow$$
 y' = cosec² x sin (cot x)

If
$$y = \cos x \cot x$$
, find y'.

$$y = \cos x \cot x$$

$$y' = -\sin x \cdot \cot x + \cos x \cdot (-\csc^2 x)$$

$$\Rightarrow y' = -\sin x \cot x - \cos x \csc^2 x$$

$$(y' = -\cos x - \cot x \csc x)$$

AH Maths - MiA (2nd Edn.)

• pg. 55-6 Ex. 4.8 All Q.

Ex. 4.8

- Differentiate and simplify a cosec x b cot x
- Find the derivative of each of these.
 - a sec 2x

- b $\tan 2x$ c $\csc 2x$ d $\csc (2x + 3)$

- e sec $(4-3x^2)$ f cot 5x g cot (x^2) h tan (1-17x)
- 3 Calculate $\frac{dy}{dx}$ in each case.
- a $y = \sec x \tan x$ b $y = \cot (\tan x)$ c $y = \csc (\sin x)$

$$g y = \sqrt{\sec x}$$

- d $y = \csc^2 3x$ e $y = \sec^2 x$ f $y = \tan^2 4x$ g $y = \sqrt{\sec x}$ h $y = \frac{1}{\sqrt{1 + \csc x}}$
- **4** Find f'(x) when

$$a f(x) = \frac{x^2 + x}{1 + \cot x}$$

a
$$f(x) = \frac{x^2 + x}{1 + \cot x}$$
 b $f(x) = \frac{\cot x + \sec x}{\cot x - \sec x}$ c $f(x) = \frac{\sec x + \cot x}{x^2 + 2x + 1}$

$$c f(x) = \frac{\sec x + \cot x}{x^2 + 2x + 1}$$

- **5** Given that $f(x) = \sin^2 x \tan x$, show that $f'\left(\frac{\pi}{4}\right) = 2$.
- a If $f(x) = \sin x \sec x$, show that $f'(\frac{\pi}{3}) = 4$.
 - **b** How might f(x) have been simplified to make the problem easier?

Answers to AH Maths (MiA), pg. 55-6, Ex. 4.8

1 a
$$-\cos x \csc^2 x$$
 b $-\csc^2 x$

2 a
$$2 \sin 2x \sec^2 2x$$
 b $2 \sec^2 2x$

b
$$2 \sec^2 2x$$

$$c - 2 \cos 2x \csc^2 2x$$

d
$$-2\cos(2x+3)\csc^2(2x+3)$$

e
$$-6x\sin(4-3x^2)\sec^2(4-3x^2)$$

f
$$-5 \csc^2 5x$$

$$g -2x \csc^2(x^2)$$

h
$$-17 \sec^2 (1 - 17x)$$

3 a
$$\sec x \tan^2 x + \sec^3 x$$

b
$$-\csc^2(\tan x)\sec^2 x$$

c
$$-\csc(\sin x)\cot(\sin x)\cos x$$

d
$$-6 \csc^2 3x \cot 3x$$

e
$$2 \sec^2 x \tan x$$

f 8 tan
$$4x \sec^2 4x$$

$$g = \frac{1}{2} \sqrt{\sec x} \cdot \tan x$$

h
$$\frac{1}{2}(1 + \csc x)^{-\frac{3}{2}} \csc x \cot x$$

4 a
$$\frac{(1+\cot x)(2x+1)+(x^2+x)\csc^2 x}{(1+\cot x)^2}$$

$$b \quad \frac{2 \sec x \left(1 + \csc^2 x\right)}{\left(\cot x - \sec x\right)^2}$$

c
$$\frac{(x+1)(\sec x \tan x - \csc^2 x) - 2(\sec x + \cot x)}{(x+1)^3}$$

5 $f'(x) = 2 \sin x \cos x \tan x + \sin^2 x \sec^2 x$, hence result.

6 a
$$f'(x) = \cos x \sec x + \sin x \sec x \tan x$$

= 1 + $\sin x \sec x \tan x$ hence result.

b
$$\sin x \sec x = \tan x$$