$20 / 9$ / 17

Unit 1 : Differential Equations - Lesson 3
$2^{\text {nd }}$-Order Homogeneous Differential Equations

LI

- Solve DEs of the form $a y^{\prime \prime}+b y^{\prime}+c y=0$. SC
- Auxiliary Equation.

$$
\begin{gathered}
A 2^{\text {nd }} \text {-order (linear, ordinary) homogeneous differential } \\
\text { equation (with constant coefficients) is } \\
\text { a differential equation that can } \\
\text { be written in the form : } \\
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0 \\
\left(a y^{\prime \prime}+b y^{\prime}+c y=0\right) \\
(a, b, c \in \mathbb{R})
\end{gathered}
$$

Solving the above type of differential equation requires the following steps:

- Form the associated Auxiliary Equation :

$$
a m^{2}+b m+c=0 \quad(m \in \mathbb{C})
$$

- Solve the Auxiliary Equation for m; there are 3 possibilities:

Solution(s) for m	General solution of
2 Real, distinct (m, n)	$y_{G}=A e^{m x}+B e^{n x}$
Real, repeated (m)	$y_{G}=A e^{m x}+B x e^{m x}$
2 Complex conjugates	
$(m=p+r i, \bar{m}=p-r i)$	$y_{G}=e^{p x}(A \cos r x+B \sin r x)$

Example 1

Obtain the general solution of,

$$
y^{\prime \prime}-7 y^{\prime}+10 y=0
$$

The Auxiliary Equation is,

$$
m^{2}-7 m+10=0
$$

Solving this for m gives,

$$
\begin{aligned}
& & (m-2)(m-5) & =0 \\
\Rightarrow & & m & =2, m=5
\end{aligned}
$$

The general solution is thus,

$$
y_{6}=A e^{2 x}+B e^{5 x}
$$

Example 2

Obtain the particular solution of,

$$
y^{\prime \prime}-7 y^{\prime}+10 y=0
$$

with the initial conditions $y=-1$ and $y^{\prime}=-11$ when $x=0$.

From Example 1, the general solution is,

$$
y_{6}=A e^{2 x}+B e^{5 x}
$$

Differentiating this gives,

$$
y_{6}^{\prime}=2 A e^{2 x}+5 B e^{5 x}
$$

The initial conditions respectively give,

$$
\begin{aligned}
-1 & =A+B \\
-11 & =2 A+5 B
\end{aligned}
$$

Solving these simultaneous equations gives,

$$
A=2, B=-3
$$

The required particular solution is thus,

$$
y=2 e^{2 x}-3 e^{5 x}
$$

Example 3

Obtain the general solution of,

$$
4 y^{\prime \prime}-4 y^{\prime}+y=0
$$

Solving the Auxiliary Equation gives,

$$
\begin{aligned}
& & 4 m^{2}-4 m+1 & =0 \\
\Rightarrow & & (2 m-1)(2 m-1) & =0 \\
\Rightarrow & & & m=1 / 2 \\
\therefore & & & y_{6}=A e^{x / 2}+B \times e^{x / 2}
\end{aligned}
$$

Example 4

Obtain the particular solution of,

$$
4 y^{\prime \prime}-4 y^{\prime}+y=0
$$

satisfying $y(0)=3$ and $y(2)=e$.

From Example 3, the general solution is,

$$
y_{G}(x)=A e^{x / 2}+B x e^{x / 2}
$$

The first initial condition gives,

$$
3=A
$$

The second initial condition then gives,

$$
\begin{aligned}
& e=A e+2 B e \\
\Rightarrow \quad & e=3 e+2 B e \\
\Rightarrow \quad B & =-1
\end{aligned}
$$

The required particular solution is thus,

$$
y=3 e^{x / 2}-x e^{x / 2}
$$

Example 5

Obtain the general solution of,

$$
y^{\prime \prime}-4 y^{\prime}+29 y=0
$$

The Auxiliary Equation is,

$$
m^{2}-4 m+29=0
$$

The Quadratic Formula gives,

$$
\left.\begin{array}{rl}
& m=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(29)}}{2(1)} \\
\Rightarrow \quad m & =\frac{4 \pm \sqrt{-100}}{2} \\
\Rightarrow \quad & m=\frac{4 \pm 10 i}{2} \\
\Rightarrow & m=2 \pm 5 i \\
\therefore & y
\end{array}\right)=e^{2 x}(A \cos 5 x+B \sin 5 x) .
$$

Example 6

Obtain the particular solution of,

$$
y^{\prime \prime}-4 y^{\prime}+29 y=0
$$

satisfying $y(0)=1$ and $y^{\prime}(0)=-2$.

From Example 5, the general solution is,

$$
y_{6}(x)=e^{2 x}(A \cos 5 x+B \sin 5 x)
$$

Differentiating this (using the Product Rule) gives,

$$
\begin{aligned}
y_{G}^{\prime}(x)= & 2 e^{2 x}(A \cos 5 x+B \sin 5 x) \\
& +e^{2 x}(-5 A \sin 5 x+5 B \cos 5 x)
\end{aligned}
$$

The initial conditions respectively give,

$$
\begin{aligned}
& \frac{1}{}=A \\
-2 & =2 A+5 B \\
\Rightarrow \quad B & =-4 / 5
\end{aligned}
$$

The required particular solution is thus,

$$
y(x)=e^{2 x}(\cos 5 x-(4 / 5) \sin 5 x)
$$

AH Maths - MiA (2 ${ }^{\text {nd }}$ Edn.)

- pg. 140 Ex. 8.4 Q 1 b, h,
$2 a, d, e$.
- pg. 141 Ex. 8.5 Q 1 f, g, h, $2 a, c$.
- pg. 142 Ex. 8.6 Q 1 d,f, 2 a, d.

1 Find the general solution in each case.
b $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} x}+5 y=0$
h $3 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+13 \frac{\mathrm{~d} y}{\mathrm{~d} x}+4 y=0$

2 Find the particular solution in each case given the initial conditions.
a $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-5 \frac{\mathrm{~d} y}{\mathrm{~d} x}+6 y=0$ when $x=0, y=4$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=10$
d $9 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+9 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=0$ when $x=0, y=4$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=-2$
e $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-4 \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$ when $x=0, y=3$ and when $x=\frac{1}{4}, y=1+2 e$

Ex. 8.5

1 Find the general solution in each case.
f $16 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+40 \frac{\mathrm{~d} y}{\mathrm{~d} x}+25 y=0$
$\mathrm{g} \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-10 \frac{\mathrm{~d} y}{\mathrm{~d} x}+25 y=0$
h $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=0$

2 Find the particular solution in each case given the initial conditions.
a $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+12 \frac{\mathrm{~d} y}{\mathrm{~d} x}+36 y=0$ when $x=0, y=1$ and when $x=1, y=3 e^{-6}$
c $9 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-12 \frac{\mathrm{~d} y}{\mathrm{~d} x}+4 y=0$ when $x=0, y=2$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{7}{3}$

1 Find the general solution in each case.
$\mathrm{d} \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+6 \frac{\mathrm{~d} y}{\mathrm{~d} x}+13 y=0$
$\mathrm{f} 4 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+101 y=0$

2 Find the particular solution in each case given the initial conditions.
a $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} x}+10 y=0 \quad$ when $x=0, y=2$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=9$
d $9 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} x}+82 y=0 \quad$ when $x=0, y=3$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=16$

Answers to AH Maths (MiA), pg. 140, Ex. 8.4

1
b $y=A e^{5 x}+B e^{x}$
2
h $y=A e^{-\frac{x}{3}}+B e^{-4 x}$
a $y=2 e^{3 x}+2 e^{2 x}$
d $y=2 e^{-\frac{x}{3}}+2 e^{-\frac{2 x}{3}}$
e $y=2 e^{4 x}+1$

Answers to AH Maths (MiA), pg. 141, Ex. 8.5
1
f $y=A e^{-\frac{5 x}{4}}+B x e^{-\frac{5 x}{4}}$
g $\quad y=A e^{5 x}+B x e^{5 x}$
h $y=A x+B$
Answers to AH Maths (MiA), pg. 142, Ex. 8.6
1
d $\quad y=e^{-3 x}(A \cos 2 x+B \sin 2 x)$
f $y=e^{-0.5 x}(A \cos 5 x+B \sin 5 x)$
2
a $y=e^{3 x}(2 \cos x+3 \sin x)$
d $y=e^{\frac{x}{3}}(3 \cos 3 x+5 \sin 3 x)$

