28 / 2 / 18

Number Theory - Lesson 2

The Fundamental Theorem of Arithmetic and Number Bases

LI

- Know and use the FTA.
- Write numbers in different bases.

<u>SC</u>

• Euclidean algorithm.

The Fundamental Theorem of Arithmetic (FTA) states that every integer can be written as a product of prime powers in exactly one way

For example,

$$9 = 3^{2}$$
 $488 = 2^{3} \times 61$

Prove that $\sqrt{2}$ is irrational using the FTA.

Assume that $\sqrt{2}$ is rational. Then \exists a, b \in \mathbb{Z} (b \neq 0) such that,

$$\sqrt{2} = \frac{a}{b}$$

where it can be assumed that a and b have no common factors; if they did, they can be cancelled out. Then,

$$a^2 = 2b^2$$

By the FTA, a and b can be written uniquely as a product of primes. So,

$$(m_1 m_2 \dots m_s)^2 = 2 (n_1 n_2 \dots n_t)^2$$

$$\Rightarrow m_1^2 m_2^2 \dots m_s^2 = 2 n_1^2 n_2^2 \dots n_t^2$$

The LHS of the previous equation has 2s factors, but the RHS has 2t+1 factors. This cannot happen if the two sides are equal.

By contradiction, $\sqrt{2}$ is irrational

Any number A can be written as uniquely as base n as,

$$A = \sum_{r=0}^{n} r_{k-i} n^{k-i} = (r_k r_{k-i} \dots r_2 r_1 r_0)_n$$
Sometimes the brackets are omitted

by dividing A (and all subsequent quotients) by n and obtaining the remainders until a 0 remainder is left. The number A is often written as,

$$A = r_k n^k + r_{k-1} n^{k-1} + \ldots + r_2 n^2 + r_1 n^1 + r_0 n^0$$

For example, 6 402 can be written in base 10 as,

$$6 402 = 6 \cdot 10^3 + 4 \cdot 10^2 + 0 \cdot 10^1 + 2 \cdot 10^0$$

= $(6402)_{10}$

For example, 37 can be written in base 2 as,

$$37 = 1.2^5 + 0.2^4 + 0.2^3 + 1.2^2 + 0.2^1 + 1.2^0$$

= (100101)₂

Write $(2031)_5$ in base 10.

$$(2031)_{5} = 2.5^{3} + 0.5^{2} + 3.5^{1} + 1.5^{0}$$

$$\Rightarrow$$
 (2031)₅ = 2.125 + 0 + 15 + 1

$$\Rightarrow$$
 (2031)₅ = (266)₁₀

Change $(8469)_{10}$ to base 7.

8 469
$$\div$$
 7 = 1 209 remainder 6 (= r_0).

$$1209 \div 7 = 172 \text{ remainder 5 (= r_1)}.$$

$$172 \div 7 = 24 \text{ remainder 4 } (= r_2).$$

$$24 \div 7 = 3$$
 remainder $3 (= r_3)$.

$$3 \div 7 = 0$$
 remainder $3 (= r_4)$.

$$\therefore (8469)_{10} = (33456)_{7}$$

002 The Fundamental The	corom of Arithmetic and	Number Bases.notebook	Echruary 29	2019
JUZ - THE FUHUAIHEHIAL TH	eorem of Anumieuc and	i Nulliber Dases.ilotebook	rebluary 20	, ZU IO

For number bases bigger than 10, we need to invent new symbols for the bigger numbers. For example, in base 13, A is 10, B is 11, C is 12 etc.. Other letters may be used for these.

To convert from one non-base ten number to another non-base ten number, we go through base 10.

Change $(8A69)_{12}$ to base 5 (A = 10).

First convert to base 10.

$$(8A69)_{12} = 8.12^3 + 10.12^2 + 6.12^1 + 9.12^0$$

$$\Rightarrow$$
 (8A69)₁₂ = 13 824 + 1 440 + 72 + 9

$$\Rightarrow$$
 (8A69)₁₂ = (15345)₁₀

Now convert this to base 5.

15 345
$$\div$$
 5 = 3 069 remainder 0 (= r_0).
3 069 \div 5 = 613 remainder 4 (= r_1).
613 \div 5 = 122 remainder 3 (= r_2).
122 \div 5 = 24 remainder 2 (= r_3).
24 \div 5 = 4 remainder 4 (= r_4).
4 \div 5 = 0 remainder 4 (= r_5).

$$\therefore (8A69)_{12} = (442340)_{5}$$

AH Maths - MiA (2nd Edn.)

- pg. 315 6 Ex. 16.2 Q 5, 9, 10.
- pg. 322 4 Ex. 16.5 Q 1, 2.

Ex. 16.2

- **5** Use the unique factorisation theorem to prove

 - a $\sqrt{7}$ is irrational b \sqrt{p} is irrational where p is a prime.
- Prove that there are no integers x and y such that $6^x = 21^y$.
- **10** Prove $\log_{10} 5$ is irrational by
 - a assuming it is rational
 - b using the laws of logs to show some power of 10 is equal to a power of 5
 - c using the unique factorisation theorem

Ex. 16.5

- Express these numbers in base 10.
 - a 1234₇
- b 777₈

- c 110110₂
- d $t81e_{12}$ where t and e are digits representing 10 and 11 respectively.
- **2** Change these numbers to the base indicated.
- a 63₁₀ to base 2 b 333₁₀ to base 4 c 1727₁₀ to base 12

- d 626₇ to base 5 **e** 401₆ to base 7 **f** #5₁₂ to base 6

Answers to AH Maths (MiA), pg. 315-6, Ex. 16.2

- 5 a $\sqrt{7} = \frac{m}{n} \Rightarrow 7n^2 = m^2$: LHS has odd number of prime factors; RHS has even.
 - **b** $\sqrt{p} = \frac{m}{n} \Rightarrow pn^2 = m^2$: LHS has odd number of prime factors; RHS has even.
- 9 $6^x = 2^x 3^x$; $21^y = 3^y 7^y$ By unique factorization theorem $6^x \neq 21^y$
- 10 $\log_{10} 5 = \frac{m}{n} \Rightarrow 5 = 10^{\frac{m}{n}} \Rightarrow 5^n = 10^m \Rightarrow 5^n = 2^m \cdot 5^m$ $\Rightarrow 5^{n-m} = 2^m$

By unique factorization theorem $5^{n-m} \neq 2^m$

Answers to AH Maths (MiA), pg. 322-4, Ex. 16.5

- 1 a 466
- **b** 511
- c 54
- d 18455

2 a 111111₂

b 11031₄

c eee₁₂

d 2224₅

e 265₇

f 11125₆