The Fundamental Theorem of Arithmetic and Number Bases

LI

- Know and use the FTA.
- Write numbers in different bases.

SC

- Euclidean algorithm. prime powers in exactly one way

For example,

$$
\begin{aligned}
9 & =3^{2} \\
488 & =2^{3} \times 61
\end{aligned}
$$

Example 1

Prove that $\sqrt{2}$ is irrational using the FTA.
Assume that $\sqrt{2}$ is rational. Then $\exists a, b \in \mathbb{Z}(b \neq 0)$ such that,

$$
\sqrt{2}=\frac{a}{b}
$$

where it can be assumed that a and b have no common factors; if they did, they can be cancelled out. Then,

$$
a^{2}=2 b^{2}
$$

By the FTA, a and b can be written uniquely as a product of primes. So,

$$
\begin{aligned}
\left(m_{1} m_{2} \ldots m_{s}\right)^{2} & =2\left(n_{1} n_{2} \ldots n_{+}\right)^{2} \\
\Rightarrow \quad m_{1}^{2} m_{2}^{2} \ldots m_{s}^{2} & =2 n_{1}^{2} n_{2}^{2} \ldots n_{+}^{2}
\end{aligned}
$$

The LHS of the previous equation has 2 s factors, but the RHS has $2 \dagger+1$ factors. This cannot happen if the two sides are equal.

By contradiction, $\sqrt{2}$ is irrational

Any number A can be written as uniquely as base n as,

$$
A=\sum_{r=0}^{n} r_{k-i} n^{k-i}=\left(r_{k} r_{k-i} \ldots r_{2} r_{1} r_{0}\right)_{n}
$$

Sometimes the brackets are omitted
by dividing A (and all subsequent quotients) by n and obtaining the remainders until a 0 remainder is left. The number A is often written as,

$$
A=r_{k} n^{k}+r_{k-1} n^{k-1}+\ldots+r_{2} n^{2}+r_{1} n^{1}+r_{0} n^{0}
$$

For example, 6402 can be written in base 10 as,

$$
\begin{aligned}
6402 & =6 \cdot 10^{3}+4.10^{2}+0.10^{1}+2.10^{0} \\
& =(6402)_{10}
\end{aligned}
$$

For example, 37 can be written in base 2 as,

$$
\begin{aligned}
37 & =1.2^{5}+0.2^{4}+0.2^{3}+1.2^{2}+0.2^{1}+1.2^{0} \\
& =(100101)_{2}
\end{aligned}
$$

Example 2

Write (2031) ${ }_{5}$ in base 10.

$$
\begin{aligned}
& (2031)_{5}=2.5^{3}+0.5^{2}+3.5^{1}+1.5^{0} \\
\Rightarrow \quad(2031)_{5} & =2.125+0+15+1 \\
\Rightarrow \quad & (2031)_{5}=(266)_{10}
\end{aligned}
$$

Example 3

Change (8469) ${ }_{10}$ to base 7.

$$
\begin{array}{ll}
& 8469 \div 7=1209 \text { remainder } 6\left(=r_{0}\right) . \\
1209 \div 7=172 \text { remainder } 5\left(=r_{1}\right) . \\
172 \div 7=24 \text { remainder } 4\left(=r_{2}\right) . \\
24 \div 7=3 \text { remainder } 3\left(=r_{3}\right) . \\
3 \div 7=0 \text { remainder } 3\left(=r_{4}\right) . \\
\therefore & (8469)_{10}=(33456)_{7}
\end{array}
$$

For number bases bigger than 10 , we need to invent new symbols for the bigger numbers. For example, in base $13, A$ is $10, B$ is $11, C$ is 12 etc.. Other letters may be used for these.

To convert from one non-base ten number to another non-base ten number, we go through base 10 .

Example 4

Change (8A69) ${ }_{12}$ to base $5(A=10)$.
First convert to base 10.

$$
\begin{array}{rlrl}
& & (8 A 69)_{12} & =8.12^{3}+10.12^{2}+6.12^{1}+9.12^{0} \\
\Rightarrow & (8 A 69)_{12} & =13824+1440+72+9 \\
\Rightarrow & (8 A 69)_{12} & =(15345)_{10}
\end{array}
$$

Now convert this to base 5 .

$$
\begin{aligned}
& \text { AH Maths - MiA (2 }{ }^{\text {nd }} \text { Edn.) } \\
& \text { - pg. 315-6 Ex. } 16.2 \text { Q 5, 9, } 10 . \\
& \text { - pg. 322-4 Ex. } 16.5 \text { Q } 1,2 .
\end{aligned}
$$

Ex. 16.2

5 Use the unique factorisation theorem to prove
a $\sqrt{7}$ is irrational $\quad \mathrm{b} \sqrt{p}$ is irrational where p is a prime.
9 Prove that there are no integers x and y such that $6^{x}=21^{y}$.
10 Prove $\log _{10} 5$ is irrational by
a assuming it is rational
b using the laws of logs to show some power of 10 is equal to a power of 5
c using the unique factorisation theorem
Ex. 16.5
1 Express these numbers in base 10.
a 1234_{7}
b 777_{8}
c 110110_{2}
d $t 81 e_{12}$ where t and e are digits representing 10 and 11 respectively.
2 Change these numbers to the base indicated.
a 63_{10} to base 2
b 333_{10} to base 4
c 1727_{10} to base 12
d 626_{7} to base 5
e 401_{6} to base 7 f $t 55_{12}$ to base 6

Answers to AH Maths (MiA), pg. 315-6, Ex. 16.2
5 a $\quad \sqrt{7}=\frac{m}{n} \Rightarrow 7 n^{2}=m^{2}$: LHS has odd number of prime factors; RHS has even.
b $\quad \sqrt{p}=\frac{m}{n} \Rightarrow p n^{2}=m^{2}$: LHS has odd number of prime factors; RHS has even.
$96^{x}=2^{x} 3^{x} ; 21^{y}=3^{y} 7^{y}$
By unique factorization theorem $6^{x} \neq 21^{y}$
$10 \log _{10} 5=\frac{m}{n} \Rightarrow 5=10^{\frac{m}{m}} \Rightarrow 5^{n}=10^{m} \Rightarrow 5^{n}=2^{m} .5^{m}$
$\Rightarrow 5^{n-m}=2^{m}$
By unique factorization theorem $5^{n-m} \neq 2^{m}$
Answers to AH Maths (MiA), pg. 322-4, Ex. 16.5
1 a 466
b 511
c 54
d 18455
2 a 111111_{2}
b $\quad 11031_{4}$
c eee $_{12}$
d $\quad 2224_{5}$
e 265_{7}
f 11125_{6}

