$22 / 2 / 16$
 Exponentials and Logarithms - Lesson 2

 Solving Logarithmic Equations

 Solving Logarithmic Equations}

LI

- Solve equations involving logarithms with the same base.

SC

- Logarithmic Rules.

If $\log _{a} b=\log _{a} c$, what is the connection between b and c ?

$b=c$
('Cancel' the logs)

Example 1

Solve $\log _{2} x=5$ for x.

Method 1

$$
\begin{aligned}
& & \log _{2} x & =5 \\
& \therefore & 2^{5} & =x \\
\Rightarrow & & x & =32
\end{aligned}
$$

Method 2

$$
\begin{aligned}
& & \log _{2} x & =5 \\
& \therefore & \log _{2} x & =5 \log _{2} 2 \\
\Rightarrow & & \log _{2} x & =\log _{2} 2^{5} \\
& \therefore & x & =2^{5} \\
\Rightarrow & & x & =32
\end{aligned}
$$

Example 2

Solve $\log _{e}(x / 5)=3$, writing the answer as an exact value.

$$
\begin{aligned}
& \log _{e}(x / 5)=3 \\
& \therefore \quad \log .(x / 5)=3 \log . e \\
& \Rightarrow \quad \log _{e}(x / 5)=\log _{e} e^{3} \\
& \therefore \quad x / 5=e^{3} \\
& \Rightarrow \quad x=5 e^{3}
\end{aligned}
$$

Example 3

Solve $9^{x}=4$ for x (to 3 dip.).

$$
\begin{aligned}
& 9^{x}=4 \\
& \therefore \quad \log _{e} 9^{x}=\log _{e} 4 \\
& \Rightarrow \quad x\left(\log _{e} 9\right)=\log _{e} 4 \\
& \Rightarrow \quad x=\left(\log _{e} 4\right) /\left(\log _{e} 9\right) \\
& \Rightarrow \quad x=0.631
\end{aligned}
$$

(Try it with base 10 - should get same answer)

Example 4

Solve $2 \log _{a} x+\log _{a} 4=\log _{\mathrm{a}} 8$ for $x>0$.

$$
\begin{aligned}
& & 2 \log _{a} x+\log _{a} 4 & =\log _{a} 8 \\
\Rightarrow & & \log _{a} x^{2}+\log _{a} 4 & =\log _{a} 8 \\
\Rightarrow & & \log _{a} 4 x^{2} & =\log _{8} 8 \\
\therefore & & 4 x^{2} & =8 \\
\Rightarrow & & x^{2} & =2 \\
\Rightarrow & & x & = \pm \sqrt{2}
\end{aligned}
$$

$$
\text { As } x>0, x=\sqrt{2} \text {. }
$$

Example 5

Solve $\log _{2}(3 x-5)-\log _{2}(x+2)=1$ for x.

$$
\begin{aligned}
& \log _{2}(3 x-5)-\log _{2}(x+2)=1 \\
& \Rightarrow \quad \log _{2}[(3 x-5) /(x+2)]=\log _{2} 2 \\
& \therefore \\
& (3 x-5) /(x+2)=2 \\
& \Rightarrow \\
& 3 x-5=2(x+2) \\
& 3 x-5=2 x+4 \\
& x=9
\end{aligned}
$$

Example 6

Solve $\log _{0}(2 x+1)+\log _{\mathrm{a}}(3 x-10)=\log _{\mathrm{a}}(11 x)$ for $x>0$.

$$
\begin{array}{rlrl}
& & \log _{0}(2 x+1)+\log _{0}(3 x-10) & =\log _{0}(11 x) \\
\Rightarrow & & \log _{0}[(2 x+1)(3 x-10)] & =\log _{0}(11 x) \\
& \therefore & (2 x+1)(3 x-10) & =11 x \\
\Rightarrow & & 6 x^{2}-17 x-10 & =11 x \\
\Rightarrow & & 6 x^{2}-28 x-10 & =0 \\
\Rightarrow & & 3 x^{2}-14 x-5=0 \\
\Rightarrow & & (3 x+1)(x-5)=0 \\
\therefore & & x=-1 / 3, x=5
\end{array}
$$

CfE Higher Maths

pg. 12 Ex. 1E All Q

pg. 13-14 Ex. 1F All Q (except2 g)
pg. 15 Ex. $1 G$ All Q (except 2 d)

