# 24 / 10 / 16

Solving Trigonometric Equations - Lesson 2

# Solving Linear Trigonometric Equations with Wave Functions

## LI

• Solve trigonometric equations of the form  $a \sin px + b \cos px + c = 0$  for  $x \in A$  in degrees or radians.

# <u>SC</u>

- Wave functions.
- Solve linear trig. equations.

# Strategy

- Use one of the four addition formulae to write a sin px + b cos px in the form of a single sine or single cosine.
- Solve the resulting linear trig. equation.

#### Example 1

Write  $5\cos x^{\circ} + 12\sin x^{\circ}$  in the form  $k\cos(x - \alpha)^{\circ}$ , where k > 0 and  $0 \le \alpha < 360$ .

Hence solve  $5 \cos x^{\circ} + 12 \sin x^{\circ} - 13 = 0$  $0 \le x < 360$ .

$$k \cos (x - \alpha)^{\circ} = k (\cos x^{\circ} \cos \alpha^{\circ} + \sin x^{\circ} \sin \alpha^{\circ})$$

$$= (k \cos \alpha^{\circ}) \cos x^{\circ} + (k \sin \alpha^{\circ}) \sin x^{\circ}$$

$$= 5 \cos x^{\circ} + 12 \sin x^{\circ}$$

$$k = \sqrt{12^2 + 5^2}$$
  $\tan \alpha^0 = \frac{12}{5}$  (3)

$$RAA = \tan^{-1}(12/5)$$

$$RAA = 67.4^{\circ}$$

$$k \sin \alpha^{\circ} = 12 \qquad \Rightarrow \qquad \sin \alpha^{\circ} > 0$$

$$k \cos \alpha^{\circ} = 5 \qquad \Rightarrow \qquad \cos \alpha^{\circ} > 0$$

$$\tan \alpha^{\circ} = \frac{12}{5} \qquad \Rightarrow \qquad \tan \alpha^{\circ} > 0$$

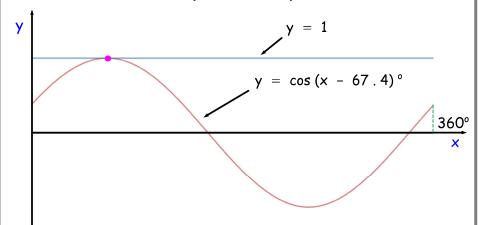
$$\therefore \quad \alpha^{\circ} = 67.4^{\circ}$$

180° + RAA 360° - RAA
T C

 $5 \cos x^{\circ} + 12 \sin x^{\circ} = 13 \cos (x - 67.4)^{\circ}$ 

To solve  $5 \cos x^{\circ} + 12 \sin x^{\circ} - 13 = 0$  (0  $\leq x < 360$ ), we use the previous result to write,

$$13 \cos (x - 67.4)^{\circ} - 13 = 0$$
$$\cos (x - 67.4)^{\circ} = 1$$



#### 1 solution expected

$$cos(x - 67.4)^{\circ} = 1$$

$$\therefore RAA = cos^{-1}1$$

$$\Rightarrow RAA = 0^{\circ}$$

$$\therefore x^{\circ} - 67.4^{\circ} = 0^{\circ}, 360^{\circ}$$
  
 $\Rightarrow x^{\circ} = 67.4^{\circ}, 427.4^{\circ}$ 

As 427 . 4° is outside the given range of  $0 \le x < 360$ , we reject it.

$$x^{\circ} = 67.4^{\circ}$$

#### Example 2

Solve  $8 \cos 2x - 6 \sin 2x - 5 = 0$ , where  $0 \le x \le 2\pi$ .

We have a choice of using any one of the four addition formulae; it's best (but not essential) to pick one that has a similar form to 'a  $\cos 2x$  - b  $\cos 2x$ ', so that we avoid negatives for the 'k  $\sin \alpha$ ' and 'k  $\cos \alpha$ ' equations.

$$k \cos (2x + \alpha) = k (\cos 2x \cos \alpha - \sin 2x \sin \alpha)$$

$$= (k \cos \alpha) \cos 2x - (k \sin \alpha) \sin 2x$$

$$= 8 \cos 2x - 6 \sin 2x$$

$$k \sin \alpha = 6 \qquad (1)$$

$$k \cos \alpha = 8 \qquad (2)$$

$$k = \sqrt{6^2 + 8^2} \qquad \tan \alpha = \frac{6}{8} \qquad (3)$$

$$k = 10 \qquad \qquad RAA = \tan^{-1}(3/4)$$

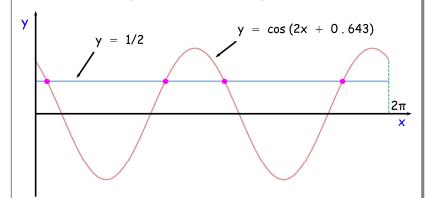
RAA = 0.643...

$$\tan \alpha = \frac{3}{4} \Rightarrow \tan \alpha > 0$$

 $8 \cos 2x - 6 \sin x = 10 \cos (2x + 0.643...)$ 

To solve  $8 \cos 2x - 6 \sin 2x - 5 = 0$   $(0 \le x \le 2\pi)$ , we use the previous result to write,

$$10 \cos (2x + 0.643...) - 5 = 0$$
  
 $\cos (2x + 0.643...) = 1/2$ 

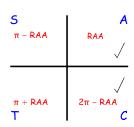


#### 4 solutions expected

$$cos (2x + 0.643...) = 1/2$$

$$\therefore RAA = cos^{-1} (1/2)$$

$$\Rightarrow RAA = \pi/3 = 1.047...$$



There are 2 more solutions, so keep adding  $2\pi$  until 2x is between 0 and  $4\pi = 12.566...$  (as  $0 \le x \le 2\pi, 0 \le 2x \le 4\pi$ ). So,

$$2x = 0.403..., 4.592...$$
  
 $0.403... + 2\pi,$   
 $5.235... + 2\pi$ 



pg. 198-9 Ex. 8H All Q