11 / 10 / 17

Unit 2 : Arithmetic and Algebra of Complex Numbers - Lesson 2

Solving Complex Quadratics and Other Simple Equations

LI

- Solve complex quadratics of the form $a z^{2}+b z+c=0$.
- Solve complex equations of the form $z^{2}=a+b i$.
- Solve other simple equations.

SC

- Quadratic formula.
- Equating real and imaginary parts.

Example 1

Solve $z^{2}-2 z+5=0$ for z.

$$
z=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(5)}}{2(1)}
$$

$$
\Rightarrow \quad z=\frac{2 \pm \sqrt{-16}}{2}
$$

$$
\Rightarrow \quad z=\frac{2 \pm \sqrt{(16)(-1)}}{2}
$$

$$
\Rightarrow \quad z=\frac{2 \pm 4 \sqrt{-1}}{2}
$$

$$
\Rightarrow \quad z=\frac{2 \pm 4 i}{2}
$$

$$
\Rightarrow \quad z=1 \pm 2 i
$$

Example 2

Solve $z^{2}+3 z+10=0$ for z.

$$
\begin{aligned}
& z \\
\Rightarrow & =\frac{-3 \pm \sqrt{3^{2}-4(1)(10)}}{2(1)} \\
\Rightarrow & z=\frac{-3 \pm \sqrt{-31}}{2} \\
\Rightarrow & z=-\frac{3}{2} \pm \frac{\sqrt{31}}{2} i
\end{aligned}
$$

Example 3

Find two numbers that have a sum of 12 and a product of 40.

Let the two numbers be a and b. We require,

$$
\begin{aligned}
a+b & =12 \\
a b & =40
\end{aligned}
$$

Solving the second equation for b and substituting into the first equation gives,

$$
\begin{aligned}
& & a+\frac{40}{a}=12 \\
\Rightarrow & a^{2}+40 & =12 a \\
\Rightarrow & a^{2}-12 a+40 & =0
\end{aligned}
$$

This is a quadratic in a. Solving it gives (check!),

$$
a=6+2 i, 6-2 i
$$

The first equation ($a+b=12$) then gives the corresponding solutions for b :

$$
\begin{aligned}
& b=12-(6+2 i) \Rightarrow b=6-2 i \\
& b=12-(6-2 i) \Rightarrow b=6+2 i
\end{aligned}
$$

So, $a=6+2 i \Rightarrow b=6-2 i$ (and vice versa); the numbers are thus,

$$
6+2 i, 6-2 i
$$

Example 4

Find the square roots of $5+12 \mathrm{i}$.
Let $a+b i$ be a square root of $5+12$ i, i.e.,

$$
\begin{array}{rlrl}
& & a+b i & =\sqrt{5+12 i} \\
& \therefore & (a+b i)^{2} & =5+12 i \\
\Rightarrow & (a+b i)(a+b i) & =5+12 i \\
\Rightarrow & \left(a^{2}-b^{2}\right)+(2 a b) i & =5+12 i
\end{array}
$$

Equating real and imaginary parts gives,

$$
\begin{aligned}
a^{2}-b^{2} & =5 \\
2 a b & =12
\end{aligned}
$$

Solving the second equation for $b(b=6 / a)$ and substituting into the first equation gives,

$$
\begin{aligned}
& a^{2}-\frac{36}{a^{2}} & =5 \\
\Rightarrow & a^{4}-36 & =5 a^{2} \\
\Rightarrow & a^{4}-5 a^{2}-36 & =0
\end{aligned}
$$

This is a quadratic in the variable a^{2}. Factorising gives,

$$
\begin{aligned}
& \left(a^{2}-9\right)\left(a^{2}+4\right)=0 \\
\Rightarrow \quad & a^{2}-9=0, a^{2}+4=0
\end{aligned}
$$

The second equation ($a^{2}=-4$) has no solutions for a (as a is a real number). So,

$$
\begin{aligned}
& a=3 \Rightarrow b=6 / 3 \Rightarrow b=2 \\
& \underline{a=-3} \Rightarrow b=6 /(-3) \Rightarrow b=-2 \\
\therefore & \sqrt{5+12 i}=3+2 i,-3-2 i
\end{aligned}
$$

Example 5

Solve for z,

$$
z+2 \bar{z}=6+8 i
$$

Let $z=x+y i$. Then,

$$
\begin{aligned}
& x+y i+2(x-y i)=6+8 i \\
\Rightarrow & x+2 x+y i-2 y i=6+8 i \\
\Rightarrow & 3 x+(-y) i=6+8 i
\end{aligned}
$$

Equating real and imaginary parts gives,

$$
\begin{aligned}
& 3 x=6 \Rightarrow x=2 \\
& -y=8 \Rightarrow y=-8
\end{aligned}
$$

$$
z=2-8 i
$$

$$
\begin{aligned}
& \text { AH Maths - MiA (} 2^{\text {nd }} \text { Edn.) } \\
& \text { - pg. 207-8 Ex. } 12.1 \text { Q } 3,5 . \\
& \text { - pg. } 209 \text { Ex. } 12.2 \text { Q } 4,5 .
\end{aligned}
$$

Solve for z :

1) $z-3 \bar{z}=9+12 i$.
2) $3 \bar{z}+i z=10-18 i$.

Ex. 12.1

3 Solve these quadratic equations giving the roots in the form $z=a \pm b i$.
a $z^{2}+2 z+2=0$
b $z^{2}+4 z+13=0$
c. $z^{2}-6 z+13=0$
d $2 z^{2}-4 z+10=0$
e $3 z^{2}-12 z+15=0$
f $2 z^{2}+12 z+36=0$

5 Solve Cardan's problem, namely:
Find two numbers which have a sum of 10 and a product of 40.

$$
\text { Ex. } 12.2
$$

4 Find a and b in each case so that $(a+i b)^{2}$ is equal to
a $5-12 i$
b $15-8 i$
c $-24-10 i$

5 Calculate
a $\sqrt{3-4 i}$
b $\sqrt{21-20 i}$
c $\sqrt{-9+40 i}$

Answers to AH Maths (MiA), pg. 207-8, Ex. 12.1

$$
\begin{array}{lllll}
3 & \text { a } & -1 \pm i & \text { b } & -2 \pm 3 i
\end{array} \text { c } \quad 3 \pm 2 i
$$

Answers to AH Maths (MiA), pg. 209, Ex. 12.2
4 a $-3+2 i$ and $3-2 i$
b $-4+i$ and $4-i$
c $\quad-1+5 i$ and $1-5 i$
5 a $-2+i$ and $2-i$
b $-5+2 i$ and $5-2 i$
c $4+5 i$ and $-4-5 i$

Solve for z :

1) $z-3 \bar{z}=9+12 i . \quad z=-(9 / 2)+3 i$
2) $3 \bar{z}+i z=10-18 \mathrm{i} . \quad z=6+8 \mathrm{i}$
