

A universal statement is a statement about all possible elements of a set

A counterexample is an exception to a proposed statement,

i.e., it makes the proposed statement false

If a universal statement is false, it is disproven by finding a counterexample

Notation

- $\mathbb N\,$ set of all natural numbers.
- $\mathbb W$ set of all whole numbers.
- $\ensuremath{\mathbb{Z}}$ set of all integers.
- $\mathbb Q\,$ set of all rational numbers.
- $\mathbb R$ set of all real numbers (all rational and irrational numbers).
- $\mathbb C$ set of all complex numbers.

Example 1

Disprove the statement : $n^3 + n + 5$ is prime ($\forall n \in \mathbb{N}$). Start with the smallest value for n. $\underline{n = 1:} n^3 + n + 5 = 1^3 + 1 + 5 = 7$, which is prime.

 $\underline{n} = 2$: $n^3 + n + 5 = 2^3 + 2 + 5 = 15$, which is not prime.

n = 2 is a counterexample; given statement is false

Example 2

Disprove the statement : x irrational $\Rightarrow x^2$ rational ($\forall x \in \mathbb{R}$). We need to find an irrational number whose square is irrational. Consider $x = 2^{1/4}$; x is clearly irrational. Then,

$$x^{2} = (2^{1/4})^{2} = 2^{2/4} = 2^{1/2} = \sqrt{2}$$

which is irrational.

 $x = 2^{1/4}$ is a counterexample; given statement is false

Example 3 Disprove the statement : x, y irrational $\Rightarrow x + y$ irrational (\forall irrational x, y). Consider $x = 2 + \pi, y = 2 - \pi$; x and y are irrational. Then, $x + y = 2 + \pi + 2 - \pi = 4$ which is not irrational. $x = 2 + \pi, y = 2 - \pi$ is a counterexample; given statement is false

Example 4

Disprove the statement : the sum of two quadratic functions is always a quadratic function.

Choosing the quadratic functions in the hypothesis to be,

$$f(x) = x^{2} + 2x + 1$$
 and $g(x) = -x^{2} + x$

shows that,

$$f(x) + g(x) = x^{2} + 2x + 1 + (-x^{2} + x)$$

 $\Rightarrow f(x) + g(x) = 3x + 1$

which is not a quadratic function (it is linear).

 $f(x) = x^2 + 2x + 1, g(x) = -x^2 + x$ is a counterexample; given statement is false

Questions

Disprove the following statements by finding a counterexample :

1)
$$|a + b| = |a| + |b|$$
 ($\forall a, b \in \mathbb{R}$).

- 2) The sum of two cubic functions is always a cubic function.
- 3) If the product of two 2 x 2 matrices is the zero matrix, then at least one of the matrices must be the zero matrix.
- 4) m, n both prime \Rightarrow m² + n² is even (\forall prime numbers m, n).
- 5) x, y both irrational \Rightarrow x y irrational (\forall irrational x, y).
- 6) x, y both irrational \Rightarrow x y irrational (\forall irrational x, y).

7)
$$x^{3} > x^{2}$$
 ($\forall x \in \mathbb{R}$).

8) If the scalar product of two 2D vectors equals zero, then at least one of the vectors must be the zero vector.

9)
$$\sqrt{a + b} = \sqrt{a} + \sqrt{b}$$
 ($\forall a, b \in \mathbb{R}$).

- 10) $sin(x + y) = sin x + sin y (\forall x, y \in \mathbb{R}).$
- 11) $\ln(x + y) = \ln x + \ln y \quad (\forall x, y \in \mathbb{R}).$
- 12) $\ln(x y) = (\ln x) (\ln y) (\forall x, y \in \mathbb{R}).$
- 13) For any 2 x 2 matrices A and B, |A + B| = |A| + |B|.