$23 / 2 / 18$
 Further Proof Techniques - Lesson 2
 Proof by Counterexample (aka Disproof)

LI

- Disprove a universal statement by finding a counterexample.

SC

- Logical reasoning.

A universal statement is a statement about all possible elements of a set

A counterexample is an exception to a proposed statement, i.e., it makes the proposed statement false

> If a universal statement is false, it is disproven by finding a counterexample

Notation

\mathbb{N} - set of all natural numbers.
\mathbb{W} - set of all whole numbers.
\mathbb{Z} - set of all integers.
\mathbb{Q} - set of all rational numbers.
\mathbb{R} - set of all real numbers (all rational and irrational numbers).
\mathbb{C} - set of all complex numbers.

Example 1

Disprove the statement: $n^{3}+n+5$ is prime $(\forall n \in \mathbb{N})$.
Start with the smallest value for n.

$$
\begin{aligned}
& n=1: n^{3}+n+5=1^{3}+1+5=7, \text { which is prime. } \\
& n=2: n^{3}+n+5=2^{3}+2+5=15, \text { which is not prime. }
\end{aligned}
$$

$$
n=2 \text { is a counterexample; given statement is false }
$$

Example 2

Disprove the statement : x irrational $\Rightarrow x^{2}$ rational $(\forall x \in \mathbb{R})$.
We need to find an irrational number whose square is irrational. Consider $x=2^{1 / 4} ; x$ is clearly irrational. Then,

$$
x^{2}=\left(2^{1 / 4}\right)^{2}=2^{2 / 4}=2^{1 / 2}=\sqrt{2}
$$

which is irrational.

$$
x=2^{1 / 4} \text { is a counterexample; given statement is false }
$$

Example 3

Disprove the statement :

$$
x, y \text { irrational } \Rightarrow x+y \text { irrational (} \forall \text { irrational } x, y \text {). }
$$

Consider $x=2+\pi, y=2-\pi ; x$ and y are irrational. Then,

$$
x+y=2+\pi+2-\pi=4
$$

which is not irrational.
$x=2+\pi, y=2-\pi$ is a counterexample; given statement is false

Example 4

Disprove the statement : the sum of two quadratic functions is always a quadratic function.

Choosing the quadratic functions in the hypothesis to be,

$$
f(x)=x^{2}+2 x+1 \text { and } g(x)=-x^{2}+x
$$

shows that,

$$
\begin{aligned}
& f(x)+g(x)=x^{2}+2 x+1+\left(-x^{2}+x\right) \\
\Rightarrow \quad & f(x)+g(x)=3 x+1
\end{aligned}
$$

which is not a quadratic function (it is linear).

$$
\begin{aligned}
& f(x)=x^{2}+2 x+1, g(x)=-x^{2}+x \text { is } \\
& \text { a counterexample; given statement is false }
\end{aligned}
$$

Questions

Disprove the following statements by finding a counterexample :

1) $|a+b|=|a|+|b|(\forall a, b \in \mathbb{R})$.
2) The sum of two cubic functions is always a cubic function.
3) If the product of two 2×2 matrices is the zero matrix, then at least one of the matrices must be the zero matrix.
4) m, n both prime $\Rightarrow m^{2}+n^{2}$ is even (\forall prime numbers m, n).
5) x, y both irrational $\Rightarrow x y$ irrational (\forall irrational x, y).
6) x, y both irrational $\Rightarrow x-y$ irrational (\forall irrational x, y).
7) $x^{3}>x^{2}(\forall x \in \mathbb{R})$.
8) If the scalar product of two $2 D$ vectors equals zero, then at least one of the vectors must be the zero vector.
9) $\sqrt{a+b}=\sqrt{a}+\sqrt{b}(\forall a, b \in \mathbb{R})$.
10) $\sin (x+y)=\sin x+\sin y(\forall x, y \in \mathbb{R})$.
11) $\ln (x+y)=\ln x+\ln y(\forall x, y \in \mathbb{R})$.
12) $\ln (x y)=(\ln x)(\ln y)(\forall x, y \in \mathbb{R})$.
13) For any 2×2 matrices A and $B,|A+B|=|A|+|B|$.
