14 / 6 / 17
 Unit 1 : Differential Calculus - Lesson 2
 Product and Quotient Rules

LI

- Know and use the Product and Quotient Rules to differentiate. SC
- Derivatives from Higher Maths.

Different Notations for the Derivative

$$
\text { If } y=f(x):
$$

- Lagrange Notation

$$
\begin{array}{ll}
y^{\prime}(x) & \text { 'y dash(ed) of } x^{\prime} \text { or ' } y \text { prime of } x^{\prime} \\
f^{\prime}(x) & \\
y^{\prime} & \text { 'y dash(ed)' or 'y prime' } \\
f^{\prime} &
\end{array}
$$

- Leibniz Notation

$\frac{d}{d x} y(x)$	'd by $d x$ of y of x^{\prime}
$\frac{d}{d x} f(x)$	Notational warning : $\frac{d y}{d x}$ $\frac{d f}{d x}$

- Euler Notation

Dy (x)	'big D of y of x^{\prime}
Df (x)	big D of y^{\prime}
Dy	Notational warning : Dy does not mean 'D times y^{\prime}
Df	

- Newton's Notation (normally for time derivatives)
$\dot{y}(t)$ means $\frac{d y}{d t} \quad y \operatorname{dot}$ of t^{\prime}
$\dot{f}(t)$
\dot{y}
'y dot'
\dot{f}

We mainly use Lagrange (dash) and Leibniz (d by $d x$) notation.

Product Rule

Used to differentiate functions that are multiplied together.

$$
\begin{aligned}
\frac{d}{d x}(f g) & =\frac{d f}{d x} g+f \frac{d g}{d x} \\
D(f g) & =D f \cdot g+f \cdot D g \\
(f g)^{\prime} & =f^{\prime} g+f g^{\prime}
\end{aligned}
$$

Example 1

Differentiate $y=(2 x+3)^{4}(3 x-7)^{5}$, fully simplifying your answer.

$$
\begin{aligned}
& f(x)=(2 x+3)^{4} \quad, \quad g(x)=(3 x-7)^{5} \\
& f^{\prime}(x)=8(2 x+3)^{3}, g^{\prime}(x)=15(3 x-7)^{4}
\end{aligned}
$$

$$
y=f(x) g(x)
$$

$\therefore y^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$
$\Rightarrow y^{\prime}=8(2 x+3)^{3} \cdot(3 x-7)^{5}+(2 x+3)^{4} \cdot 15(3 x-7)^{4}$
$\Rightarrow y^{\prime}=(2 x+3)^{3}(3 x-7)^{4}(8(3 x-7)+15(2 x+3))$
$\Rightarrow y^{\prime}=(2 x+3)^{3}(3 x-7)^{4}(24 x-56+30 x+45)$
$\Rightarrow y^{\prime}=(54 x-11)(2 x+3)^{3}(3 x-7)^{4}$

Example 2

Find the gradient of the tangent to $y=\sin x \cos 2 x$ at the point $x=\pi / 3$.

$$
\begin{aligned}
& f(x)=\sin x \quad, \quad g(x)=\cos 2 x \\
& f^{\prime}(x)=\cos x \quad, \quad g^{\prime}(x)=-2 \sin 2 x \\
& y(x)=f(x) g(x) \\
& \therefore \quad y^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \\
& \Rightarrow \quad y^{\prime}(x)=\cos x \cdot \cos 2 x+\sin x .(-2 \sin 2 x) \\
& \Rightarrow \quad y^{\prime}(x)=\cos x \cos 2 x-2 \sin x \sin 2 x \\
& \therefore y^{\prime}(\pi / 3)=\cos (\pi / 3) \cos (2 \pi / 3)-2 \sin (\pi / 3) \sin (2 \pi / 3) \\
& \Rightarrow y^{\prime}(\pi / 3)=(1 / 2)(-1 / 2)-2(\sqrt{3} / 2)(\sqrt{3} / 2) \\
& \Rightarrow y^{\prime}(\pi / 3)=-1 / 4-6 / 4 \\
& \Rightarrow y^{\prime}(\pi / 3)=-7 / 4
\end{aligned}
$$

Quotient Rule

Used to differentiate functions that are divided together.

$$
\frac{d}{d x}(f / g)=\frac{\frac{d f}{d x} g-f \frac{d g}{d x}}{g^{2}}
$$

$$
D(f / g)=\frac{D f . g-f . D g}{g^{2}}
$$

$$
(f / g)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}
$$

Example 3

Differentiate $y=\frac{x^{4}}{\sin x}$, fully simplifying your answer.

$$
\begin{aligned}
& \begin{aligned}
& f(x)=x^{4}, g(x)=\sin x \\
& f^{\prime}(x)=4 x^{3}, g^{\prime}(x)=\cos x
\end{aligned} \\
& y=\frac{f(x)}{g(x)} \\
\therefore & y^{\prime}=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{(g(x))^{2}} \\
\Rightarrow & y^{\prime}=\frac{4 x^{3} \cdot \sin x-x^{4} \cdot \cos x}{(\sin x)^{2}} \\
\Rightarrow & y^{\prime}=\frac{x^{3}(4 \sin x-x \cos x)}{\sin ^{2} x}
\end{aligned}
$$

Example 4

Show that $y=\frac{x^{3}}{x^{2}+3}$ only has a horizontal tangent at $x=0$.

$$
\begin{array}{rlrl}
& & \begin{array}{ll}
f(x)=x^{3}, \\
f^{\prime}(x) & =3 x^{2}, g^{\prime}(x)=2 x
\end{array} \\
& y=\frac{f(x)}{g(x)} \\
\therefore & y^{\prime}=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{(g(x))^{2}} \\
\Rightarrow & y^{\prime}=\frac{3 x^{2}\left(x^{2}+3\right)-x^{3}(2 x)}{\left(x^{2}+3\right)^{2}} \\
\Rightarrow & y^{\prime}=\frac{3 x^{4}+9 x^{2}-2 x^{4}}{\left(x^{2}+3\right)^{2}} \\
\Rightarrow & y^{\prime}=\frac{x^{4}+9 x^{2}}{\left(x^{2}+3\right)^{2}} \\
\Rightarrow & y^{\prime}=\frac{x^{2}\left(x^{2}+9\right)}{\left(x^{2}+3\right)^{2}}
\end{array}
$$

Horizontal tangent means $y^{\prime}=0$. So,

$$
\begin{aligned}
& \frac{x^{2}\left(x^{2}+9\right)}{\left(x^{2}+3\right)^{2}}=0 \\
\Rightarrow & x^{2}\left(x^{2}+9\right)=0 \\
\Rightarrow & x=0
\end{aligned}
$$

$$
\text { AH Maths - MiA (2 }{ }^{\text {nd }} \text { Edn.) }
$$
 $$
\text { -pg. } 51 \text { Ex. 4.5 All Q. }
$$
 -pg. 52-3 Ex. 4.6 All Q.
 -pg. 53-4 Ex. 4.7 All Q.

Ex. 4.5

1 Find the derivative of each of these.
a $x^{3} \sin x$
b $(x+1)^{2} \cos x$
c $(2 x+3)^{2} \cos 3 x$
d $(x+1)^{4}(x-1)^{3}$
e $(3-x)^{4}(x+2)^{2}$
f $x^{-2}(x+4)^{3}$
g $(x+1)^{-2}(x-1)^{2}$
h $(x+2)^{-1}(x-1)^{-1}$

2 a If $f(x)=x^{3}(x+1)^{2}$, find $f^{\prime}(1)$.
b If $f(x)=(x-1)^{2} \sin x$, find $f^{\prime}\left(\frac{\pi}{2}\right)$.
3 Differentiate each of these.
a $(2 x+1)^{2} \cos x$
b $\sin 2 x \cos 3 x$
c $x^{4} \sin 3 x$
d $(2 x+1)^{2}(3 x-1)^{4}$
e $\left(x^{2}+x\right) \sin 2 x$
f $\left(x^{2}-1\right)\left(x^{3}-1\right)$
g $\sin 2 x \sin 3 x$
h $x\left(x^{2}+3 x\right)^{3}$
i $x^{4}\left(x^{2}+3 x\right)$
j $\sin x \cos x$
$\mathrm{k} \sin (2 x+1) \sin (3 x+2) \quad 1 \sin ^{2} x \cos ^{2} x$

4 Find the derivative of each of these.
a $(1-5 x)^{3}(1+5 x)^{2}$
b $\sin 3 x \cos 5 x$
c $x(x+1)^{3} \sin 2 x$
d $(x+1)^{-2}(2 x+1)^{2}$

5 Find $f^{\prime}\left(\frac{\pi}{4}\right)$ given that
a $f(x)=x \cos ^{2} x$
b $f(x)=x \cos x^{2}$

6 Find $f^{\prime}\left(\frac{\pi}{3}\right)$ given that
a $f(x)=(\cos x \sin x)^{2}$
b $f(x)=\cos x \sin ^{2} x$
7 If $f(x)=\left(3 x^{2}+5\right)\left(2 x^{2}+3 x+1\right)$ find $f^{\prime}(0)$.
$8 f(x)=\frac{x+1}{x-1}$
a By considering the function as $f(x)=(x+1)(x-1)^{-1}$, find $f^{\prime}(x)$.
b Differentiate
i $\frac{3 x+1}{2 x-1}$
ii $\frac{3-2 x}{x+4}$
iii $\frac{\sin x}{\cos x}$

9 In 1630 Pierre De Fermat studied a curve called 'The Witch of Agnesi'.
Its equation is of the form $x^{2} y=4 a^{2}(2 a-y)$ where a is a constant.

a In this example $a=1$. Show that $y=\frac{8}{x^{2}+4}$.
b Find the gradient of the tangent to the curve at the point $(2,1)$.

Ex. 4.6

1 Differentiate these.
a $\frac{x^{3}}{2 x+1}$
b $\frac{\cos x}{\sin x}$
c $\frac{1-x}{1+x^{2}}$
d $\frac{\sin x}{x}$

2 Find the derivative of
a $\frac{x^{2}}{\sin x}$
b $\frac{2 x}{\sqrt{x+5}}$
c $\frac{x+2}{\sqrt{\sin x}}$
d $\frac{\sqrt{x+1}}{2 x}$
e $\frac{3 x+4}{x^{\frac{3}{2}}}$

3 Use the quotient rule to differentiate
a $\frac{1}{\sin x}$
b $\frac{1}{\cos x}$
c $\frac{\sin x}{\cos ^{2} x}$
d $\frac{\sin x}{\cos 2 x}$

4 a If $f(x)=\frac{x+1}{x^{2}+2}$ find $f^{\prime}(0) . \quad$ b If $f(x)=\frac{x^{2}}{\sqrt{x-1}}$ find $f^{\prime}(2)$.
5 Solve $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ where $y=\frac{2 x^{2}+3 x-6}{x-2}$.
6 a Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ where $y=\frac{4}{(x-3)(x+1)}$.
b i Express y in partial fractions.
ii Now find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
c Compare the methods.
7 The graph shows $y=\frac{1}{\sin x+\cos x} ;-0.5 \leqslant x \leqslant 2$.

a Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
b Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sin x-\cos x}{1+\sin 2 x}$.
c Find the gradient of the curve

Ex. 4.7

1 Find the derivative of each of these.
a $\frac{x+1}{x^{2}+3}$
b $\frac{1}{\sin 2 x}$
c. $\sin ^{2} 3 x$
d $(x+1)^{3}\left(x^{3}+1\right)$

2 If $y=\sin (\sin x)$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
3 Find $f^{\prime}(x)$ when $f(x)=(x+1)^{2} \cos 2 x$.
$4 y=\frac{\cos x}{\cos x+\sin x}$. Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{1}{1+\sin 2 x}$ and hence find the gradient of the tangent at $x=\frac{\pi}{4}$.
5 Differentiate $\frac{(2 x+3)^{3}}{x^{2}+3 x-1}$.
6 The diagram shows a classic curve, the serpentine curve, whose equation is $x^{2} y=a x-a^{2} y$ where a is a constant.

a Make y the subject of the equation.
b Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{a\left(a^{2}-x^{2}\right)}{\left(a^{2}+x^{2}\right)^{2}}$.
c The diagram shows the case where $a=1$.
What is the gradient at $x=0$ in this case?
d Let m_{1}, m_{2}, m_{3} be the gradients of the tangents at $x=\frac{a}{2}, x=a$ and $x=2 a$ respectively. Show that $m_{1}+m_{2}+4 m_{3}=0$.

Answers to AH Maths (MiA), pg. 51, Ex. 4.5

1 a $3 x^{2} \sin x+x^{3} \cos x$
b $2(x+1) \cos x-(x+1)^{2} \sin x$
c $4(2 x+3) \cos 3 x-3(2 x+3)^{2} \sin 3 x$
d $4(x+1)^{3}(x-1)^{3}+3(x+1)^{4}(x-1)^{2}$
e $\quad-4(3-x)^{3}(x+2)^{2}+2(3-x)^{4}(x+2)$
f $-2 x^{-3}(x+4)^{3}+3 x^{-2}(x+4)^{2}$
g $\quad-2(x+1)^{-3}(x-1)^{2}+2(x+1)^{-2}(x-1)$
h $\quad-(x+2)^{-2}(x-1)^{-1}-(x+2)^{-1}(x-1)^{-2}$
2 a 16
b $\pi-2$
3 a $4(2 x+1) \cos x-(2 x+1)^{2} \sin x$
b $2 \cos 2 x \cos 3 x-3 \sin 2 x \sin 3 x$
c $4 x^{3} \sin 3 x+3 x^{4} \cos 3 x$
d $\quad 4(2 x+1)(3 x-1)^{4}+12(2 x+1)^{2}(3 x-1)^{3}$
e $(2 x+1) \sin 2 x+2\left(x^{2}+x\right) \cos 2 x$
f $2 x\left(x^{3}-1\right)+3\left(x^{2}-1\right) x^{2}$
g $2 \cos 2 x \sin 3 x+3 \sin 2 x \cos 3 x$
h $\left(x^{2}+3 x\right)^{3}+3 x(2 x+3)\left(x^{2}+3 x\right)^{2}$
i $\quad 4 x^{3}\left(x^{2}+3 x\right)+x^{4}(2 x+3)$
j $\cos ^{2} x-\sin ^{2} x=\cos 2 x$
$\mathrm{k} \quad 2 \cos (2 x+1) \sin (3 x+2)+3 \sin (2 x+1) \cos (3 x+2)$
$1 \quad 2 \sin x \cos ^{3} x-2 \sin ^{3} x \cos x$
4 a $\quad-15(1-5 x)^{2}(1+5 x)^{2}+10(1-5 x)^{3}(1+5 x)$
b $3 \cos 3 x \cos 5 x-5 \sin 3 x \sin 5 x$
c $(x+1)^{2}(4 x+1) \sin 2 x+2 x(x+1)^{3} \cos 2 x$
d $-2(2 x+1)^{2}(x+1)^{-3}+4(2 x+1)(x+1)^{-2}$

Answers to AH Maths (MiA), pg. 52-3, Ex. 4.6

1 a $\frac{4 x^{3}+3 x^{2}}{(2 x+1)^{2}}$
b $-\frac{1}{\sin ^{2} x}$
c $\frac{x^{2}-2 x-1}{\left(1+x^{2}\right)^{2}}$
d $\frac{x \cos x-\sin x}{x^{2}}$
2 a $\frac{2 x \sin x-x^{2} \cos x}{\sin ^{2} x}$
b $\frac{x+10}{(x+5)^{\frac{3}{2}}}$
c $\frac{2 \sin x-(x+2) \cos x}{2(\sin x)^{\frac{3}{2}}} \mathrm{~d} \frac{-x-2}{4 x^{2} \sqrt{x+1}}$
e $\frac{-3 x^{\frac{1}{2}}(x+4)}{2 x^{3}}$
3 a $-\frac{\cos x}{\sin ^{2} x}$
b $\frac{\sin x}{\cos ^{2} x}$
c $\frac{1+\sin ^{2} x}{\cos ^{3} x}$
d $\frac{\cos 2 x \cos x+2 \sin x \sin 2 x}{\cos ^{2} 2 x}$
4 a $\frac{1}{2}$
b 2
$5 x=0,4$
6 a $-\frac{8(x-1)}{(x-3)^{2}(x+1)^{2}}$
b i $\frac{1}{x-3}-\frac{1}{x+1} \quad$ ii $-\frac{1}{(x-3)^{2}}+\frac{1}{(x+1)^{2}}$
c The partial fractions method involves more working but simpler derivatives.
7 a $\frac{\sin x-\cos x}{(\sin x+\cos x)^{2}}$
b $\frac{\sin x-\cos x}{\sin ^{2}+\cos ^{2} x+2 \sin x \cos x}=\frac{\sin x-\cos x}{1+\sin 2 x}$
c $\begin{array}{ll}\text { i }-1 & \text { ii } 1\end{array}$

Answers to AH Maths (MiA), pg. 53-4, Ex. 4.7
1 a $\frac{3-2 x-x^{2}}{\left(x^{2}+3\right)^{2}} \quad$ b $-\frac{2 \cos 2 x}{\sin ^{2} 2 x}$
c $6 \sin 3 x \cos 3 x=3 \sin 6 x$
d $3(x+1)^{2}\left(x^{3}+1\right)+3 x^{2}(x+1)^{3}$
$2 \cos x \cos (\sin x)$
$32(x+1) \cos 2 x-2(x+1)^{2} \sin 2 x$
$4 \frac{-(\cos x+\sin x) \sin x-\cos x(-\sin x+\cos x)}{(\cos x+\sin x)^{2}}$
$=\frac{-\cos x \sin x-\sin ^{2} x+\cos x \sin x-\cos ^{2} x}{\cos ^{2} x+\sin ^{2} x+2 \sin x \cos x}$
$\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=\frac{\pi}{4}}=-\frac{1}{2}$
$5 \frac{6\left(x^{2}+3 x-1\right)(2 x+3)^{2}-(2 x+3)^{4}}{\left(x^{2}+3 x-1\right)^{2}}$
6 a $y=\frac{a x}{x^{2}+a^{2}}$
b $\frac{\left(x^{2}+a^{2}\right) a-a x 2 x}{\left(x^{2}+a^{2}\right)^{2}}=\frac{a\left(x^{2}+a^{2}-2 x^{2}\right)}{\left(x^{2}+a^{2}\right)^{2}}$ hence result.
c 1
d $\quad m_{1}=\frac{12}{25 a} ; m_{2}=0 ; m_{3}=-\frac{3}{25 a}$ hence result.

