14 / 6 / 17

Unit 1 : Differential Calculus - Lesson 2

Product and Quotient Rules

LI

• Know and use the Product and Quotient Rules to differentiate.

<u>SC</u>

• Derivatives from Higher Maths.

Different Notations for the Derivative

If
$$y = f(x)$$
:

• Lagrange Notation

Leibniz Notation

$$\frac{d}{dx} y(x) \qquad \text{'d by dx of y of x'}$$

$$\frac{d}{dx} f(x) \qquad \qquad \text{Notational warning :}$$

$$\frac{dy}{dx} \qquad \text{'dy by dx'} \qquad \frac{dy}{dx} \text{ is not a fraction}$$

$$\frac{df}{dx}$$

• Euler Notation

Newton's Notation (normally for time derivatives)

$$\dot{y}$$
 (t) means $\frac{dy}{dt}$ 'y dot of t' \dot{f} (t) \dot{y} 'y dot' \dot{f}

We mainly use Lagrange (dash) and Leibniz (d by dx) notation.

Product Rule

Used to differentiate functions that are multiplied together.

$$\frac{d}{dx} (fg) = \frac{df}{dx} g + f \frac{dg}{dx}$$

$$D (fg) = Df \cdot g + f \cdot Dg$$

$$(fg)' = f'g + fg'$$

Differentiate $y = (2x + 3)^4(3x - 7)^5$, fully simplifying your answer.

$$f(x) = (2x + 3)^4$$
, $g(x) = (3x - 7)^5$
 $f'(x) = 8(2x + 3)^3$, $g'(x) = 15(3x - 7)^4$

$$y = f(x)g(x)$$

$$\therefore y' = f'(x)g(x) + f(x)g'(x)$$

$$\Rightarrow$$
 y' = 8 (2 x + 3)³. (3 x - 7)⁵ + (2 x + 3)⁴. 15 (3 x - 7)⁴

$$\Rightarrow$$
 y' = $(2 \times + 3)^3 (3 \times - 7)^4 (8 (3 \times - 7) + 15 (2 \times + 3))$

$$\Rightarrow$$
 y' = $(2 \times + 3)^3 (3 \times - 7)^4 (24 \times - 56 + 30 \times + 45)$

$$\Rightarrow$$
 y' = (54 x - 11) (2 x + 3) 3 (3 x - 7) 4

Find the gradient of the tangent to $y = \sin x \cos 2x$ at the point $x = \pi/3$.

$$f(x) = \sin x$$
 , $g(x) = \cos 2x$
 $f'(x) = \cos x$, $g'(x) = -2 \sin 2x$

$$y(x) = f(x)g(x)$$

$$\therefore$$
 y'(x) = f'(x)g(x) + f(x)g'(x)

$$\Rightarrow$$
 y'(x) = cos x . cos 2x + sin x . (- 2 sin 2x)

$$\Rightarrow$$
 y'(x) = cos x cos 2x - 2 sin x sin 2x

$$\therefore$$
 y'($\pi/3$) = cos($\pi/3$) cos($2\pi/3$) - 2 sin($\pi/3$) sin($2\pi/3$)

$$\Rightarrow$$
 y'($\pi/3$) = (1/2)(-1/2) - 2($\sqrt{3}/2$)($\sqrt{3}/2$)

$$\Rightarrow y'(\pi/3) = -1/4 - 6/4$$

$$\Rightarrow y'(\pi/3) = -7/4$$

Quotient Rule

Used to differentiate functions that are divided together.

$$\frac{d}{dx} (f/g) = \frac{\frac{df}{dx} g - f \frac{dg}{dx}}{g^2}$$

$$D(f/g) = \frac{Df \cdot g - f \cdot Dg}{g^2}$$

$$(f/g)' = \frac{f'g - fg'}{g^2}$$

Differentiate $y = \frac{x^4}{\sin x}$, fully simplifying your answer.

$$f(x) = x^4$$
 , $g(x) = \sin x$
 $f'(x) = 4x^3$, $g'(x) = \cos x$

$$y = \frac{f(x)}{g(x)}$$

$$\therefore y' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

$$\Rightarrow y' = \frac{4 x^3 . \sin x - x^4 . \cos x}{(\sin x)^2}$$

$$\Rightarrow y' = \frac{x^3(4 \sin x - x \cos x)}{\sin^2 x}$$

Show that $y = \frac{x^3}{x^2 + 3}$ only has a horizontal tangent

at x = 0.

$$f(x) = x^3$$
 , $g(x) = x^2 + 3$
 $f'(x) = 3x^2$, $g'(x) = 2x$

$$y = \frac{f(x)}{g(x)}$$

$$\therefore y' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

$$\Rightarrow y' = \frac{3 x^2 (x^2 + 3) - x^3 (2 x)}{(x^2 + 3)^2}$$

$$\Rightarrow y' = \frac{3x^4 + 9x^2 - 2x^4}{(x^2 + 3)^2}$$

$$\Rightarrow y' = \frac{x^4 + 9x^2}{(x^2 + 3)^2}$$

$$\Rightarrow y' = \frac{x^2(x^2 + 9)}{(x^2 + 3)^2}$$

Horizontal tangent means y' = 0. So,

$$\frac{x^2(x^2+9)}{(x^2+3)^2}=0$$

$$\Rightarrow x^2(x^2+9)=0$$

$$\Rightarrow$$
 $x = 0$

AH Maths - MiA (2nd Edn.)

- pg. 51 Ex. 4.5 All Q.
- pg. 52-3 Ex. 4.6 All Q.
- pg. 53-4 Ex. 4.7 All Q.

Ex. 4.5

- **1** Find the derivative of each of these.
 - a $x^3 \sin x$

- b $(x + 1)^2 \cos x$ c $(2x + 3)^2 \cos 3x$ d $(x + 1)^4 (x 1)^3$

- e $(3-x)^4(x+2)^2$ f $x^{-2}(x+4)^3$ g $(x+1)^{-2}(x-1)^2$ h $(x+2)^{-1}(x-1)^{-1}$
- **2** a If $f(x) = x^3(x+1)^2$, find f'(1).
 - b If $f(x) = (x-1)^2 \sin x$, find $f'(\frac{\pi}{2})$.
- **3** Differentiate each of these.

- d $(2x+1)^2(3x-1)^4$

- a $(2x + 1)^2 \cos x$ b $\sin 2x \cos 3x$ c $x^4 \sin 3x$ d $(2x + 1)^2 (3x +$

- i $x^4(x^2 + 3x)$
- j $\sin x \cos x$ k $\sin (2x + 1) \sin (3x + 2)$ 1 $\sin^2 x \cos^2 x$

- 4 Find the derivative of each of these.
 - a $(1-5x)^3 (1+5x)^2$ b $\sin 3x \cos 5x$

 - c $x(x+1)^3 \sin 2x$ d $(x+1)^{-2} (2x+1)^2$
- 5 Find $f'(\frac{\pi}{4})$ given that a $f(x) = x \cos^2 x$ b $f(x) = x \cos x^2$
- 6 Find $f'(\frac{\pi}{3})$ given that $f(x) = (\cos x \sin x)^2$ b $f(x) = \cos x \sin^2 x$
- 7 If $f(x) = (3x^2 + 5)(2x^2 + 3x + 1)$ find f'(0).
- 8 $f(x) = \frac{x+1}{x-1}$
 - a By considering the function as $f(x) = (x + 1)(x 1)^{-1}$, find f'(x).
 - b Differentiate i $\frac{3x+1}{2x-1}$ ii $\frac{3-2x}{x+4}$ iii $\frac{\sin x}{\cos x}$
- 9 In 1630 Pierre De Fermat studied a curve called 'The Witch of Agnesi'.

Its equation is of the form $x^2 y = 4a^2(2a - y)$ where a is a constant.

- a In this example a = 1. Show that $y = \frac{8}{x^2 + 4}$.
- **b** Find the gradient of the tangent to the curve at the point (2, 1).

Ex. 4.6

Differentiate these.

a
$$\frac{x^3}{2x+1}$$
 b $\frac{\cos x}{\sin x}$ c $\frac{1-x}{1+x^2}$ d $\frac{\sin x}{x}$

$$b \frac{\cos x}{\sin x}$$

$$\frac{1-x}{1+x^2}$$

$$\frac{\sin x}{x}$$

2 Find the derivative of

$$\frac{x^2}{\sin x}$$

a
$$\frac{x^2}{\sin x}$$
 b $\frac{2x}{\sqrt{x+5}}$ c $\frac{x+2}{\sqrt{\sin x}}$ d $\frac{\sqrt{x+1}}{2x}$ e $\frac{3x+4}{x^{\frac{3}{2}}}$

$$c \frac{x+2}{\sqrt{\sin x}}$$

d
$$\frac{\sqrt{x+1}}{2x}$$

e
$$\frac{3x+4}{x^{\frac{3}{2}}}$$

3 Use the quotient rule to differentiate

a
$$\frac{1}{\sin x}$$

$$b \frac{1}{\cos x}$$

$$c \frac{\sin x}{\cos^2 x}$$

a
$$\frac{1}{\sin x}$$
 b $\frac{1}{\cos x}$ c $\frac{\sin x}{\cos^2 x}$ d $\frac{\sin x}{\cos 2x}$

4 a If
$$f(x) = \frac{x+1}{x^2+2}$$
 find $f'(0)$. b If $f(x) = \frac{x^2}{\sqrt{x-1}}$ find $f'(2)$.

b If
$$f(x) = \frac{x^2}{\sqrt{x-1}}$$
 find $f'(2)$.

5 Solve
$$\frac{dy}{dx} = 0$$
 where $y = \frac{2x^2 + 3x - 6}{x - 2}$.

6 a Find
$$\frac{dy}{dx}$$
 where $y = \frac{4}{(x-3)(x+1)}$.

b i Express y in partial fractions.

ii Now find $\frac{dy}{dx}$.

c Compare the methods.

7 The graph shows $y = \frac{1}{\sin x + \cos x}$; $-0.5 \le x \le 2$.

a Find $\frac{dy}{dx}$.

b Show that $\frac{dy}{dx} = \frac{\sin x - \cos x}{1 + \sin 2x}$.

c Find the gradient of the curve

Ex. 4.7

1 Find the derivative of each of these.

a
$$\frac{x+1}{x^2+3}$$

$$b \frac{1}{\sin 2r}$$

a
$$\frac{x+1}{x^2+3}$$
 b $\frac{1}{\sin 2x}$ c $\sin^2 3x$ d $(x+1)^3(x^3+1)$

- 2 If $y = \sin(\sin x)$, find $\frac{dy}{dx}$.
- 3 Find f'(x) when $f(x) = (x + 1)^2 \cos 2x$.
- 4 $y = \frac{\cos x}{\cos x + \sin x}$. Show that $\frac{dy}{dx} = -\frac{1}{1 + \sin 2x}$ and hence find the gradient of the tangent at $x = \frac{\pi}{4}$
- Differentiate $\frac{(2x+3)^3}{x^2+3x-1}$.
- 6 The diagram shows a classic curve, the serpentine curve, whose equation is $x^2y = ax - a^2y$ where a is a constant.

- a Make y the subject of the equation.
- **b** Show that $\frac{dy}{dx} = \frac{a(a^2 x^2)}{(a^2 + x^2)^2}$.
- c The diagram shows the case where a = 1. What is the gradient at x = 0 in this case?
- d Let m_1 , m_2 , m_3 be the gradients of the tangents at $x = \frac{a}{2}$, x = a and x = 2arespectively. Show that $m_1 + m_2 + 4m_3 = 0$.

Answers to AH Maths (MiA), pg. 51, Ex. 4.5

1 a
$$3x^2 \sin x + x^3 \cos x$$

b
$$2(x+1)\cos x - (x+1)^2\sin x$$

c
$$4(2x + 3) \cos 3x - 3(2x + 3)^2 \sin 3x$$

d
$$4(x+1)^3(x-1)^3 + 3(x+1)^4(x-1)^2$$

e
$$-4(3-x)^3(x+2)^2+2(3-x)^4(x+2)$$

$$f -2x^{-3}(x+4)^3 + 3x^{-2}(x+4)^2$$

g
$$-2(x+1)^{-3}(x-1)^2 + 2(x+1)^{-2}(x-1)$$

h
$$-(x+2)^{-2}(x-1)^{-1}-(x+2)^{-1}(x-1)^{-2}$$

3 a
$$4(2x + 1)\cos x - (2x + 1)^2\sin x$$

b
$$2\cos 2x\cos 3x - 3\sin 2x\sin 3x$$

c
$$4x^3 \sin 3x + 3x^4 \cos 3x$$

d
$$4(2x+1)(3x-1)^4+12(2x+1)^2(3x-1)^3$$

e
$$(2x + 1) \sin 2x + 2(x^2 + x) \cos 2x$$

$$f = 2x(x^3-1)+3(x^2-1)x^2$$

$$g = 2 \cos 2x \sin 3x + 3 \sin 2x \cos 3x$$

h
$$(x^2 + 3x)^3 + 3x(2x + 3)(x^2 + 3x)^2$$

i
$$4x^3(x^2+3x)+x^4(2x+3)$$

$$j \quad \cos^2 x - \sin^2 x = \cos 2x$$

k
$$2\cos(2x+1)\sin(3x+2)+3\sin(2x+1)\cos(3x+2)$$

$$1 \quad 2\sin x \cos^3 x - 2\sin^3 x \cos x$$

4 a
$$-15(1-5x)^2(1+5x)^2+10(1-5x)^3(1+5x)$$

b
$$3\cos 3x\cos 5x - 5\sin 3x\sin 5x$$

c
$$(x + 1)^2 (4x + 1) \sin 2x + 2x(x + 1)^3 \cos 2x$$

d
$$-2(2x+1)^2(x+1)^{-3}+4(2x+1)(x+1)^{-2}$$

5 a
$$\frac{1}{2} - \frac{\pi}{4}$$

b $\cos(\frac{\pi^2}{16}) - \frac{\pi^2}{8} \sin \frac{\pi^2}{16} \approx 0.102047$

6 a
$$-\frac{\sqrt{3}}{4}$$
 b $-\frac{\sqrt{3}}{8}$

8 a
$$-\frac{2}{(x-1)^2}$$

b i
$$-\frac{5}{(2x-1)^2}$$
 ii $-\frac{11}{(x+4)^2}$

iii
$$1 + \tan^2 x$$

9 a
$$x^2y = 4(2 - y) \Rightarrow (x^2 + 4)y = 8$$

b
$$-\frac{1}{2}$$

Answers to AH Maths (MiA), pg. 52-3, Ex. 4.6

1 a
$$\frac{4x^3 + 3x^2}{(2x + 1)^2}$$
 b $-\frac{1}{\sin^2 x}$
c $\frac{x^2 - 2x - 1}{(1 + x^2)^2}$ d $\frac{x \cos x - \sin x}{x^2}$

$$b = -\frac{1}{\sin^2 x}$$

c
$$\frac{x^2-2x-1}{(1+x^2)^2}$$

d
$$\frac{x \cos x - \sin x}{x^2}$$

2 a
$$\frac{2x \sin x - x^2 \cos x}{\sin^2 x}$$
 b $\frac{x+10}{(x+5)^2}$

b
$$\frac{x+10}{(x+5)^{\frac{3}{2}}}$$

c
$$\frac{2\sin x - (x+2)\cos x}{2(\sin x)^{\frac{3}{2}}}$$
d $\frac{-x-2}{4x^2\sqrt{x+1}}$

$$e^{-3x^{\frac{1}{2}}(x+4)}$$

3 a
$$-\frac{\cos x}{\sin^2 x}$$

b
$$\frac{\sin x}{\cos^2 x}$$

$$c = \frac{1 + \sin^2 x}{\cos^3 x}$$

3 a
$$-\frac{\cos x}{\sin^2 x}$$
 b $\frac{\sin x}{\cos^2 x}$
c $\frac{1+\sin^2 x}{\cos^3 x}$ d $\frac{\cos 2x \cos x + 2 \sin x \sin 2x}{\cos^2 2x}$

4 a
$$\frac{1}{2}$$

$$5 x = 0, 4$$

6 a
$$-\frac{8(x-1)}{(x-3)^2(x+1)^2}$$

$$b \quad i \quad \frac{1}{x-3} - \frac{1}{x+1}$$

b i
$$\frac{1}{x-3} - \frac{1}{x+1}$$
 ii $-\frac{1}{(x-3)^2} + \frac{1}{(x+1)^2}$

 The partial fractions method involves more working but simpler derivatives.

$$7 \quad a \quad \frac{\sin x - \cos x}{(\sin x + \cos x)^2}$$

b
$$\frac{\sin x - \cos x}{\sin^2 + \cos^2 x + 2\sin x \cos x} = \frac{\sin x - \cos x}{1 + \sin 2x}$$

Answers to AH Maths (MiA), pg. 53-4, Ex. 4.7

1 a
$$\frac{3-2x-x^2}{(x^2+3)^2}$$
 b $-\frac{2\cos 2x}{\sin^2 2x}$

c
$$6 \sin 3x \cos 3x = 3 \sin 6x$$

d
$$3(x+1)^2(x^3+1) + 3x^2(x+1)^3$$

$$2 \cos x \cos (\sin x)$$

$$3 \ 2(x+1)\cos 2x - 2(x+1)^2\sin 2x$$

$$4 \frac{-(\cos x + \sin x)\sin x - \cos x (-\sin x + \cos x)}{(\cos x + \sin x)^{2}}$$
$$= \frac{-\cos x \sin x - \sin^{2} x + \cos x \sin x - \cos^{2} x}{\cos^{2} x + \sin^{2} x + 2 \sin x \cos x}$$

$$= \frac{-\cos x \sin x - \sin^2 x + \cos x \sin x - \cos^2 x}{\cos^2 x + \sin^2 x + 2 \sin x \cos x}$$

$$\left. \frac{\mathrm{d}y}{\mathrm{d}x} \right|_{x = \frac{\pi}{4}} = -\frac{1}{2}$$

$$5 \frac{6(x^2 + 3x - 1)(2x + 3)^2 - (2x + 3)^4}{(x^2 + 3x - 1)^2}$$

$$6 \quad a \quad y = \frac{ax}{x^2 + a^2}$$

b
$$\frac{(x^2 + a^2) a - ax 2x}{(x^2 + a^2)^2} = \frac{a(x^2 + a^2 - 2x^2)}{(x^2 + a^2)^2}$$
 hence result.

d
$$m_1 = \frac{12}{25a}$$
; $m_2 = 0$; $m_3 = -\frac{3}{25a}$ hence result.