$20 / 9$ / 16

Vectors - Lesson 2

Position Vectors, Coordinates and Equilibrium

LI

- Know what a Position Vector is.
- Know what is means for vectors to be in Equilibrium.

SC

- Arithmetic.

A position vector is a vector relative to a reference position
$\overrightarrow{O A}$ is the position vector of A relative to O.
$\overrightarrow{O B}$ is the position vector of B relative to O.
$\overrightarrow{A B}$ is the position vector of B relative to A.

$$
\begin{aligned}
& \overrightarrow{O A}+\overrightarrow{A B}=\overrightarrow{O B} \begin{array}{c}
\text { Head-to-Tail } \\
\text { Rule }
\end{array} \\
\therefore & \overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A} \\
\Rightarrow & \overrightarrow{A B}=b-a
\end{aligned}
$$

Vectors are in Equilibrium if their resultant equals the zero vector

Example 1

If A, B and C are the points $(-3,2),(1,0)$ and $(6,5)$, find $\overrightarrow{A B}, \overrightarrow{B C}$ and $\overrightarrow{C A}$.

The position vectors of points A, B and C are:

$$
\begin{aligned}
& \mathbf{a}=\binom{-3}{2} \\
& \mathbf{b}=\binom{1}{0} \\
& \mathbf{c}=\binom{6}{5}
\end{aligned}
$$

So,

$$
\begin{aligned}
& \overrightarrow{A B}=\mathbf{b}-\mathbf{a}=\binom{1}{0}-\binom{-3}{2}=\binom{4}{-2} \\
& \overrightarrow{B C}=\mathbf{c}-\mathbf{b}=\binom{6}{5}-\binom{1}{0}=\binom{5}{5} \\
& \overrightarrow{C A}=\mathbf{a}-\mathbf{c}=\binom{-3}{2}-\binom{6}{5}=\binom{-9}{-3}
\end{aligned}
$$

Example 2

$A B C D$ is a parallelogram with $A(3,8), B(-4,11)$, and $C(-1,6)$. Find the coordinates of D.

Making a sketch shows that the vectors
$\overrightarrow{A B}$ and $\overrightarrow{D C}$ are equal.

$$
\begin{array}{rlrl}
\overrightarrow{A B} & =\overrightarrow{D C} \\
\therefore & \mathbf{b}-\mathbf{a} & =\mathbf{c}-\mathbf{d} \\
\Rightarrow & \mathbf{d} & =\mathbf{c}+\mathbf{a}-\mathbf{b} \\
\Rightarrow & \mathbf{d} & =\binom{-1}{6}+\binom{3}{8}-\binom{-4}{11} \\
\Rightarrow & & \mathbf{d} & =\binom{6}{3} \\
& & \\
& & D(6,3)
\end{array}
$$

Example 3
The three forces $\left(\begin{array}{c}-6 \\ -4 \\ 2\end{array}\right),\left(\begin{array}{l}3 \\ 2 \\ 5\end{array}\right)$ and $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ are in equilibrium.

Find the values of a, b and c.
As the three forces are in equilibrium, their resultant equals the zero vector. So,

$$
\begin{gathered}
\left(\begin{array}{c}
-6 \\
-4 \\
2
\end{array}\right)+\left(\begin{array}{c}
3 \\
2 \\
5
\end{array}\right)+\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
-3 \\
7
\end{array}\right)+\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
\Rightarrow \quad\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
3 \\
2 \\
-7
\end{array}\right) \\
a a=3, b=2, c=-7
\end{gathered}
$$

CfE Higher Maths

pg. 102 Ex. 5B All Q pg. 115-6 Ex. 6A All Q

