20 / 9 / 16

Vectors - Lesson 2

Position Vectors, Coordinates and Equilibrium

LI

- Know what a Position Vector is.
- Know what is means for vectors to be in Equilibrium.

<u>SC</u>

• Arithmetic.

A position vector is a vector relative to a reference position

OA is the position vector of A relative to O.

OB is the position vector of B relative to O.

AB is the position vector of B relative to A.

$$\overrightarrow{OA}$$
 + \overrightarrow{AB} = \overrightarrow{OB} Head-to-Tail

$$\therefore \quad \overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

$$\Rightarrow | \overrightarrow{AB} = \mathbf{b} - \mathbf{a} |$$

Vectors are in Equilibrium if their resultant equals the zero vector

Example 1

If A, B and C are the points (-3, 2), (1, 0) and (6, 5), find \overrightarrow{AB} , \overrightarrow{BC} and \overrightarrow{CA} .

The position vectors of points A, B and C are:

$$a = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$$

$$b = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$c = \begin{pmatrix} 6 \\ 5 \end{pmatrix}$$

So,

$$\overrightarrow{AB} = \mathbf{b} - \mathbf{a} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \begin{pmatrix} -3 \\ 2 \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$$

$$\overrightarrow{BC} = \mathbf{c} - \mathbf{b} = \begin{pmatrix} 6 \\ 5 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 5 \\ 5 \end{pmatrix}$$

$$\overrightarrow{CA} = \mathbf{a} - \mathbf{c} = \begin{pmatrix} -3 \\ 2 \end{pmatrix} - \begin{pmatrix} 6 \\ 5 \end{pmatrix} = \begin{pmatrix} -9 \\ -3 \end{pmatrix}$$

Example 2

ABCD is a parallelogram with A (3, 8), B (- 4, 11), and C (- 1, 6). Find the coordinates of D.

 \overrightarrow{AB} and \overrightarrow{DC} are equal.

$$\overrightarrow{AB} = \overrightarrow{DC}$$

$$\therefore \quad \mathbf{b} - \mathbf{a} = \mathbf{c} - \mathbf{d}$$

$$\Rightarrow \quad \mathbf{d} = \mathbf{c} + \mathbf{a} - \mathbf{b}$$

$$\Rightarrow \quad \mathbf{d} = \begin{pmatrix} -1 \\ 6 \end{pmatrix} + \begin{pmatrix} 3 \\ 8 \end{pmatrix} - \begin{pmatrix} -4 \\ 11 \end{pmatrix}$$

$$\Rightarrow \quad \mathbf{d} = \begin{pmatrix} 6 \\ 3 \end{pmatrix}$$

D (6, 3)

Example 3

The three forces $\begin{pmatrix} -6 \\ -4 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix}$ and $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ are in equilibrium.

Find the values of a, b and c.

As the three forces are in equilibrium, their resultant equals the zero vector. So,

$$\begin{pmatrix} -6 \\ -4 \\ 2 \end{pmatrix} + \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix} + \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} -3 \\ -2 \\ 7 \end{pmatrix} + \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ -7 \end{pmatrix}$$

$$a = 3, b = 2, c = -7$$

CfE Higher Maths

pg. 102 Ex. 5B All Q

pg. 115-6 Ex. 6A All Q