$23 / 3 / 16$
 Straight Lines - Lesson 2
 Parallel and Perpendicular Lines

LI

- Know the 3 different ways of writing equations of straight lines.
- Find equations of parallel and perpendicular lines.

SC

- Calculate gradients.
- Rearrange equations.

Equations of Lines

Slope - Intercept Form

$$
y=m x+c
$$

General Form

$$
A x+B y+C=0
$$

Example 1

A line has gradient $-\frac{1}{2}$ and passes through the point $(4,-7)$.

Find the equation of the line in general form.

$$
\begin{aligned}
y-b & =m(x-a) \\
y-(-7) & =-\frac{1}{2}(x-4) \\
y+7 & =-\frac{1}{2}(x-4) \\
2 y+14 & =-(x-4) \\
2 y+14 & =-x+4 \\
x+2 y+10 & =0
\end{aligned}
$$

$m_{1} \times m_{2}=-1$

Example 2

A line L has equation $2 x+5 y-1=0$.
Find the equation of the line parallel to L and passing through $(2,3)$.

$$
\begin{gathered}
2 x+5 y-1=0 \\
\Rightarrow \quad y=-\frac{2}{5} x+\frac{1}{5} \\
\therefore \quad m_{\llcorner }=-\frac{2}{5} \\
\therefore \quad m_{\text {PARA }}=-\frac{2}{5} \\
y-b=m(x-a) \\
y-3=-\frac{2}{5}(x-2) \\
5 y-15=-2(x-2) \\
5 y-15=-2 x+4 \\
2 x+5 y=19
\end{gathered}
$$

Example 3

A line L has equation $3 y-3-2 x=0$.
Find the equation of the line perpendicular to L and passing through (-1,5).

$$
\begin{aligned}
& 3 y-3-2 x=0 \\
& \Rightarrow \quad y=\frac{2}{3} x+1 \\
& \therefore \quad m_{\llcorner }=\frac{2}{3} \\
& \therefore m_{\text {PEEP. }}=-\frac{3}{2} \\
& y-b=m(x-a) \\
& y-5=-\frac{3}{2}(x-(-1)) \\
& 2 y-10=-3(x+1) \\
& 2 y-10=-3 x-3 \\
& 3 x+2 y=7 \\
& \begin{array}{ll}
(-1,5) \\
a
\end{array} \\
& 3 x+\frac{3}{2}
\end{aligned}
$$

Example 4

A line L makes an angle of 45° with the negative x-axis.

Find the equation of the line perpendicular to L and passing through (2, 2).

$$
\begin{aligned}
& \therefore \quad m_{\llcorner }=-1 \\
& \therefore \quad m_{\text {PEP. }}=1 \\
& m=1 \\
& \begin{array}{cc}
(2,2) \\
a & \\
b
\end{array} \\
& y=x
\end{aligned}
$$

Example 5

For which values of k are the lines
$2 x-k y+3=0$ and $4 x+y-1=0$ perpendicular?

$$
\begin{aligned}
& 2 x-k y+3=0 \Rightarrow y=\frac{2}{k} x+\frac{3}{k} \\
& \therefore \quad m_{1}=\frac{2}{k}
\end{aligned}
$$

$$
4 x+y-1=0 \Rightarrow y=-4 x+1
$$

$$
\therefore \quad m_{2}=-4
$$

For lines to be perpendicular,

$$
\begin{array}{rlrl}
& & m_{1} m_{2} & =-1 \\
\therefore & \frac{2}{k}(-4) & =-1 \\
\Rightarrow & -\frac{8}{k} & =-1 \\
\Rightarrow & & k=8
\end{array}
$$

CfE Higher Maths

pg. 295 Ex. 13 A All Q
pg. 298-9 Ex. 13C All Q

