5 / 12 / 16

Applications of Calculus - Lesson 2

Optimisation

LI

• Solve Optimisation Problems.

<u>SC</u>

- Stationary points and values.
- Values of the function at possible endpoints.

Optimisation is finding the 'optimal' solution to a problem.

Examples include: the maximum volume of a cylinder (the radius is the variable); the minimum surface area of metal required to construct a given cuboid.

An optimisation problem for a function y = f(x) normally involves the following steps:

- Make the function y = f(x) from information in the question.
- Find stationary points of f and their nature.
- Work out y values at the stationary points.
- Find y values at any end points.

In rectangle PQRS, PQ = 12 cm and QR = 8 cm.

Show that the area of quadrilateral TUVW is given by $A(x) = 96 - 20x + 2x^2$ and hence find the minimum area of this quadrilateral.

The area of quadrilateral TUVW is the area of rectangle PQRS minus the areas of the 4 white triangles. Each big triangle has length (12 - x) cm and height x cm. Each small triangle has length (8 - x) cm and height x cm. Hence,

$$A(x) = (12 \times 8) - x(12 - x) - x(8 - x)$$

 $A(x) = 96 - 12x + x^2 - 8x + x^2$

$$A(x) = 96 - 20x + 2x^2$$

$$A(x) = 96 - 20x + 2x^{2}$$

 $A'(x) = -20 + 4x$

For a minimum, A'(x) = 0:

$$-20 + 4x = 0$$

 $x = 5$

Need to check that x = 5 gives a minimum:

×	4	5	6
A' (x)	ı	0	+
Slope			

$$A'(x) = -20 + 4x$$

$$A'(4) = -20 + 4(4)$$

$$A'(4) = -4 < 0$$

$$A'(x) = -20 + 4x$$

$$A'(4) = -20 + 4(6)$$

$$A'(4) = 4 > 0$$

 \therefore x = 5 cm gives a minimum value for A (x)

The minimum area A_{MIN} is obtained by putting this x - value into the equation for A(x):

$$A_{\text{MIN.}} = A (5)$$
 $A_{\text{MIN.}} = 96 - 20 (5) + 2 (5)^{2}$
 $A_{\text{MIN.}} = 96 - 100 + 50$
 $A_{\text{MIN.}} = 46 \text{ cm}^{2}$

Plastic storage containers are made from rectangular sheets measuring $2.5\,\text{m}$ by $4\,\text{m}$. Two congruent rectangles of width \times cm are removed from a sheet.

The remaining plastic is the net of a cuboid; this net is used to create a storage container of height x cm.

Show that the volume, V cm³, of a container is,

$$V(x) = 2 x^3 - 650 x^2 + 50000 x$$

and find the value of x which maximises the volume. Also find the maximum volume.

Let L and B be the length and breadth (both in cm), respectively, of the cuboid :

The volume of the cuboid is V(x) = L B H. The volume must therefore be expressed in terms of the variable x only. We have, expressing all dimensions in cm,

$$2 x + L = 250$$

$$\Rightarrow L = 250 - 2 x$$

Also,

$$2 x + 2 B = 400$$

$$\Rightarrow B = 200 - x$$

$$V(x) = L B H$$

$$V(x) = (250 - 2 x)(200 - x) x$$

$$V(x) = (50000 - 650 x + 2 x^{2}) x$$

$$V(x) = 2 x^{3} - 650 x^{2} + 50000 x$$

$$V(x) = 2 x^3 - 650 x^2 + 50000 x$$

 $V'(x) = 6 x^2 - 1300 x + 50000$

For a maximum, V'(x) = 0:

$$6 x^2 - 1300 x + 50000 = 0$$

This quadratic can be solved by factorising as $(2 \times -100)(3 \times -500)$ - not obvious !!! - or by using the quadratic formula. The answers for \times are :

$$x = 50, \frac{500}{3} (\approx 166.67)$$

×	40	50	100	<u>500</u> 3	170
f ' (x)	+	0	1	0	+
Slope			/		

$$V'(x) = 6 x^2 - 1300 x + 50000$$

$$\therefore$$
 V'(40) = 6 (40)² - 1 300 (40) + 50 000

$$\Rightarrow$$
 V'(40) = 7600 > 0

$$V'(x) = 6 x^2 - 1300 x + 50000$$

$$\therefore$$
 V'(100) = 6(100)² - 1300(100) + 50000

$$\Rightarrow$$
 V'(100) = -20000 < 0

$$V'(x) = 6 x^2 - 1300 x + 50000$$

$$\therefore$$
 V'(170) = 6(170)² - 1300(170) + 50000

$$\Rightarrow$$
 V'(170) = 2400 > 0

$$\therefore$$
 x = 50 cm gives a maximum volume

$$V_{\text{\tiny MAX}} = V (50)$$

$$V_{\text{MAX}} = 2 (50)^3 - 650 (50)^2 + 50 000 (50)$$

$$V_{\text{\tiny MAX.}} = 250\ 000\ -\ 1\ 625\ 000\ +\ 2\ 500\ 000$$

$$V_{MAX} = 1125000 \text{ cm}^{3}$$

A small baking tin is in the shape of an open-topped, square-based cuboid with volume 500 cm^3 . The length of the base is x cm.

(a) Show that the surface area, S, of metal required to make the tin is given by,

$$S(x) = x^2 + \frac{2000}{x}$$

(b) Find the dimensions of the tin which minimise the surface area.

(a) The formula for S(x) only has one variable (x); The idea is to use any equations that connect x and h to solve for h (in terms of x) and get S(x) in terms of x only.

$$S = x^{2} + xh + xh + xh + xh$$

$$S = x^{2} + 4xh$$

$$V = x^{2}h \xrightarrow{\text{equation connecting } x \text{ h and } V}$$

$$V = x^{2}h$$

$$x^{2}h = 500$$

$$h = \frac{500}{x^{2}}$$

$$5(x) = x^2 + 4xh$$

$$5(x) = x^2 + 4x \left(\frac{500}{x^2}\right)$$

$$S(x) = x^2 + \frac{2000}{x}$$

$$S(x) = x^2 + \frac{2000}{x}$$

$$S(x) = x^2 + 2000 x^{-1}$$

$$\therefore$$
 S'(x) = 2x - 2000 x⁻²

For a minimum, S'(x) = 0:

$$2x - 2000x^{-2} = 0$$

$$x - 1000 x^{-2} = 0$$

$$x^3 - 1000 = 0$$

$$x^3 = 1000$$

$$x = 10$$

Need to check that x = 10 cm gives a minimum:

×	9	10	11
5' (x)	ı	0	+
Slope	/		

$$S'(x) = 2x - \frac{2000}{x^2}$$

$$\therefore \qquad S'(9) = 2(9) - \frac{2000}{9^2}$$

$$\Rightarrow \qquad \underline{S'(9) \approx -6.69 < 0}$$

$$S'(x) = 2x - \frac{2000}{x^2}$$

$$\therefore \qquad S'(11) = 2(11) - \frac{2000}{11^2}$$

$$\Rightarrow \qquad 5 (11) \approx 5.47 > 0$$

\therefore x = 10 cm gives a minimum value for S (x)

$$h = \frac{500}{x^2}$$

$$h = \frac{500}{10^2}$$

$$h = 5 cm$$

Dimensions of minimum surface area:

10 cm by 10 cm by 5 cm

A 2 metre wire is cut x cm from one end and bent to make an equilateral triangle and a square.

The total area of the square and equilateral triangle is given by,

$$A(x) = \frac{x^2}{16} + \frac{\sqrt{3}}{36} (2 - x)^2$$

Where should the wire be cut for a maximum total area and where should it be cut for a minimum total area?

Find the maximum and minimum total areas to 2 d.p. .

We are not asked to derive the equation for the area. So, just differentiate, find stationary points and their nature and state the maximum and minimum values for the area.

$$A(x) = \frac{x^2}{16} + \frac{\sqrt{3}}{36} (2 - x)^2$$

$$A'(x) = \frac{x}{8} - \frac{\sqrt{3}}{18} (2 - x)$$

For maximum or minimum total areas, A'(x) = 0:

$$\frac{x}{8} - \frac{\sqrt{3}}{18} (2 - x) = 0$$

After a little manipulation, we find that,:

$$x = \frac{8\sqrt{3}}{9 + 4\sqrt{3}} \approx 0.869...$$

For ease of future reference, we shall denote this x - value by $x_{\rm c}$.

×	0.7	10	0.9
5' (x)	1	0	+
Slope	/		

$$A'(x) = \frac{x}{8} - \frac{\sqrt{3}}{18}(2 - x)$$

$$\therefore A'(0.7) = \frac{0.7}{8} - \frac{\sqrt{3}}{18}(2 - 0.7)$$

$$\Rightarrow$$
 A'(0.7) \approx -0.037592 < 0

$$A'(x) = \frac{x}{8} - \frac{\sqrt{3}}{18}(2 - x)$$

$$\therefore A'(0.9) = \frac{0.9}{8} - \frac{\sqrt{3}}{18}(2-0.9)$$

$$\Rightarrow$$
 A'(0.9) \approx 0.006652 > 0

$$A(x) = \frac{x^2}{16} + \frac{\sqrt{3}}{36} (2 - x)^2$$

$$A(x_c) = \frac{(x_c)^2}{16} + \frac{\sqrt{3}}{36} (2 - x_c)^2$$

$$A(x_c) = \frac{12 + 9\sqrt{3}}{(9 + 4\sqrt{3})^2}$$

A (x
$$_{\circ}$$
) \approx 0.1087...

At the endpoints,

$$A (0) = \frac{(0)^2}{16} + \frac{\sqrt{3}}{36} (2 - 0)^2$$

$$A(0) = \frac{\sqrt{3}}{9}$$

$$A(0) \approx 0.1924...$$

$$A(2) = \frac{(2)^2}{16} + \frac{\sqrt{3}}{36} (2 - 2)^2$$

$$A(2) = 0.25$$

Wire must be cut at 2 cm from one end to give a maximum area of 0.25 cm². Wire must be cut at x_c (\approx 0.87) cm from that same end to give a minimum area of 0.11 cm² (to 2 d. p.).

CfE Higher Maths