28 / 11 / 17

Unit 2 : Proof by Mathematical Induction - Lesson 2

Mathematical Induction 2 (Divisibility)

LI

• Use Proof by Mathematical Induction to solve problems involving divisibility.

<u>SC</u>

• Algebra.

Proof by Mathematical Induction

The Principle of Mathematical Induction (PMI) states that, to prove a statement (P(n)) about an infinite set of natural numbers:

- Prove the Base Case: P (n_o) is true.
- Prove the Inductive Step:

$$P(k)$$
 true $\Rightarrow P(k + 1)$ true.

Then P (n) is true \forall n \geq n_o.

Usually, $n_0 = 1$; then we would state the conclusion as 'P (n) is true \forall $n \in \mathbb{N}$ '.

Divisibility

If a natural number A is divisible by a natural number B, this is written $B \mid A$ ('B divides A' or 'A is divisible by B'). Then there exists a natural number w such that A = Bw. So, for A, $B \in \mathbb{N}$,

 $B \mid A$ is equivalent to $\exists w \in \mathbb{N}$ such that A = Bw.

Example 1

Prove by induction that 7^n-1 is divisible by $6 \ \forall \ n \in \mathbb{N}$.

Proving that 7^n-1 is divisible by 6 is equivalent to proving that $\exists w \in \mathbb{N}$ such that $7^n-1=6$ w.

$$P(n): 7^n - 1 = 6 w \text{ (for some } w \in \mathbb{N})$$

Base Case

As
$$7^1 - 1 = 6 = 6.1, P(1)$$
 is true

Inductive Step

Assume P(k) is true for some $k \in \mathbb{N}$, i.e. assume that :

$$7^k - 1 = 6 r \text{ (for some } r \in \mathbb{N}) \longleftarrow \frac{\text{Inductive}}{\text{Hypothesis}}$$

RTP statement

$$7^{k+1} - 1 = 6 u$$
 (for some $u \in \mathbb{N}$)

$$7^{k+1} - 1 = 7^k \cdot 7 - 1$$

$$\Rightarrow$$
 $7^{k+1} - 1 = (6 r + 1) . 7 - 1$

$$\Rightarrow$$
 $7^{k+1} - 1 = 6.7r + 7 - 1$

$$\Rightarrow$$
 $7^{k+1} - 1 = 6.7 r + 6$

$$\Rightarrow$$
 $7^{k+1} - 1 = 6 (7 r + 1)$

$$\Rightarrow 7^{k+1} - 1 = 6 u$$

As $r \in \mathbb{N}$, $u = 7r + 1 \in \mathbb{N}$.

Hence,
$$P(k)$$
 true $\Rightarrow P(k + 1)$ true

'P (1) true' and 'P (k) true \Rightarrow P (k + 1) true' together imply, by the PMI, that P (n) is true \forall n \in N

Example 2

Prove by induction that $8^n - 3^n$ is divisible by $5 \ \forall \ n \in \mathbb{N}$.

$$P(n): 8^n - 3^n = 5 w \text{ (for some } w \in \mathbb{N})$$

Base Case

As
$$8^1 - 3^1 = 5 = 5.1$$
, P(1) is true

Inductive Step

Assume P(k) is true for some $k \in \mathbb{N}$, i.e. assume that :

$$8^k - 3^k = 5 r$$
 (for some $r \in \mathbb{N}$) \longleftarrow Inductive Hypothesis

RTP statement

$$8^{k+1} - 3^{k+1} = 5 u$$
 (for some $u \in \mathbb{N}$)

$$8^{k+1} - 3^{k+1} = 8^k \cdot 8 - 3^{k+1}$$

$$\Rightarrow$$
 8^{k+1} - 3^{k+1} = (5 r + 3^k).8 - 3^{k+1}

$$\Rightarrow$$
 8^{k+1} - 3^{k+1} = 5.8r + 8.3^k - 3^{k+1}

$$\Rightarrow$$
 $8^{k+1} - 3^{k+1} = 5.8r + 8.3^k - 3.3^k$

$$\Rightarrow$$
 $8^{k+1} - 3^{k+1} = 5.8 r + 5.3^{k}$

$$\Rightarrow$$
 8^{k+1} - 3^{k+1} = 5(8 r + 3^k)

$$\Rightarrow 8^{k+1} - 3^{k+1} = 5u$$

As $r, k \in \mathbb{N}, u = 8r + 3^k \in \mathbb{N}$.

Hence,
$$P(k)$$
 true $\Rightarrow P(k + 1)$ true

'P (1) true' and 'P (k) true \Rightarrow P (k + 1) true' together imply, by the PMI, that P (n) is true \forall n \in N

Example 3

Prove by induction that $2^{3n+2} + 5^{n+1}$ is divisible by $3 \ \forall \ n \in \mathbb{N}$.

$$P(n): 2^{3n+2} + 5^{n+1} = 3 w \text{ (for some } w \in \mathbb{N})$$

Base Case

As
$$2^{3+2} + 5^{1+1} = 32 + 25 = 57 = 3.19$$
, P(1) is true

Inductive Step

Assume P(k) is true for some $k \in \mathbb{N}$, i.e. assume that :

$$2^{3k+2} + 5^{k+1} = 3r$$
 (for some $r \in \mathbb{N}$) \leftarrow Inductive Hypothesis

RTP statement

$$2^{3(k+1)+2} + 5^{k+2} = 3 u \text{ (for some } u \in \mathbb{N})$$

$$2^{3(k+1)+2} + 5^{k+2} = 2^{3k+3+2} + 5^{k+2}$$

$$\Rightarrow$$
 $2^{3(k+1)+2} + 5^{k+2} = 2^{3k+2} \cdot 2^3 + 5^{k+2}$

$$\Rightarrow$$
 $2^{3(k+1)+2} + 5^{k+2} = (3r - 5^{k+1}).8 + 5^{k+2}$

$$\Rightarrow \quad 2^{\,3\,(k\,+\,1)\,+\,2} \,\,+\,\, 5^{\,k\,+\,2} \,\,=\,\, 3\,\,.\,\, 8\,\,r\,\,-\,\, 8\,\,.\, 5^{\,k\,+\,1} \,\,+\,\, 5\,\,.\, 5^{\,k\,+\,1}$$

$$\Rightarrow$$
 $2^{3(k+1)+2} + 5^{k+2} = 3.8r - 3.5^{k+1}$

$$\Rightarrow$$
 $2^{3(k+1)+2} + 5^{k+2} = 3(8r - 5^{k+1})$

$$\Rightarrow$$
 $2^{3(k+1)+2} + 5^{k+2} = 3 u$

As
$$r, k \in \mathbb{N}, u = 8r - 5^{k+1} \in \mathbb{N}$$
 (as $3r > 5^{k+1}$).

Hence,
$$P(k)$$
 true $\Rightarrow P(k + 1)$ true

'P (1) true' and 'P (k) true \Rightarrow P (k + 1) true' together imply, by the PMI, that P (n) is true \forall n \in N

Questions (and 'Answers'!)

Prove by mathematical induction that $\forall n \in \mathbb{N}$:

- 1) $5^{2n} 1$ is divisible by 24.
- 2) $n^3 + 5n + 6$ is divisible by 3.
- 3) $4^{3n} + 8$ is divisible by 9.
- 4) $4^{n+1} + 5^{2n-1}$ is divisible by 21.
- 5) $5^{2n} 4^{2n}$ is divisible by 9.
- 6) $7^{2n} + 16n 1$ is divisible by 64.