28 / 11 / 17
Unit 2 : Proof by Mathematical Induction - Lesson 2

Mathematical Induction 2 (Divisibility)

LI

- Use Proof by Mathematical Induction to solve problems involving divisibility.

SC

- Algebra.

Proof by Mathematical Induction

The Principle of Mathematical Induction (PMI) states that, to prove a statement $(P(n))$ about an infinite set of natural numbers :

- Prove the Base Case: $P\left(n_{0}\right)$ is true.
- Prove the Inductive Step :
$P(k)$ true $\Rightarrow P(k+1)$ true.
Then $P(n)$ is true $\forall n \geq n_{0}$.

Usually, $n_{0}=1$; then we would state the conclusion as ' $P(n)$ is true $\forall n \in \mathbb{N}^{\prime}$.

Divisibility

If a natural number A is divisible by a natural number B, this is written $B \mid A$ (' B divides A ' or ' A is divisible by B^{\prime}). Then there exists a natural number w such that $A=B w$. So, for $A, B \in \mathbb{N}$,
$B \mid A$ is equivalent to $\exists w \in \mathbb{N}$ such that $A=B w$.

Example 1

Prove by induction that $7^{n}-1$ is divisible by $6 \forall n \in \mathbb{N}$.
Proving that $7^{n}-1$ is divisible by 6 is equivalent to proving that $\exists w \in \mathbb{N}$ such that $7^{n}-1=6 w$.

$$
P(n): 7^{n}-1=6 w(\text { for some } w \in \mathbb{N})
$$

Base Case

$$
\text { As } 7^{1}-1=6=6.1, P(1) \text { is true }
$$

Inductive Step

Assume $P(k)$ is true for some $k \in \mathbb{N}$, i.e. assume that :

$$
\begin{gathered}
7^{k}-1=6 r(\text { for some } r \in \mathbb{N}) \longleftarrow \begin{array}{c}
\text { Inductive } \\
\text { Hypothesis }
\end{array} \\
\left.7^{k+1}-1=6 u \text { (for some } u \in \mathbb{N}\right)
\end{gathered}
$$

$$
7^{k+1}-1=7^{k} \cdot 7-1
$$

$$
\Rightarrow \quad 7^{k+1}-1=(6 r+1) \cdot 7-1
$$

$$
\Rightarrow \quad 7^{k+1}-1=6.7 r+7-1
$$

$$
\Rightarrow \quad 7^{k+1}-1=6.7 r+6
$$

$$
\Rightarrow \quad 7^{k+1}-1=6(7 r+1)
$$

$$
\Rightarrow \quad 7^{k+1}-1=6 u
$$

As $r \in \mathbb{N}, u=7 r+1 \in \mathbb{N}$.

$$
\text { Hence, } P(k) \text { true } \Rightarrow P(k+1) \text { true }
$$

' $P(1)$ true' and $' P(k)$ true $\Rightarrow P(k+1)$ true' together imply, by the PMI, that $P(n)$ is true $\forall n \in \mathbb{N}$

Example 2

Prove by induction that $8^{n}-3^{n}$ is divisible by $5 \forall n \in \mathbb{N}$.

$$
P(n): 8^{n}-3^{n}=5 w \text { (for some } w \in \mathbb{N} \text {) }
$$

Base Case

$$
\text { As } 8^{1}-3^{1}=5=5 \cdot 1, P(1) \text { is true }
$$

Inductive Step

Assume $P(k)$ is true for some $k \in \mathbb{N}$, i.e. assume that:

$$
\begin{gathered}
8^{k}-3^{k}=5 r(\text { for some } r \in \mathbb{N}) _ \text {Inductive } \\
\text { Hypothesis } \\
8^{k+1}-3^{k+1}=5 u(\text { for some } u \in \mathbb{N})
\end{gathered}
$$

$$
8^{k+1}-3^{k+1}=8^{k} \cdot 8-3^{k+1}
$$

$$
\Rightarrow \quad 8^{k+1}-3^{k+1}=\left(5 r+3^{k}\right) \cdot 8-3^{k+1}
$$

$$
\Rightarrow \quad 8^{k+1}-3^{k+1}=5.8 r+8 \cdot 3^{k}-3^{k+1}
$$

$$
\Rightarrow \quad 8^{k+1}-3^{k+1}=5.8 r+8 \cdot 3^{k}-3.3^{k}
$$

$$
\Rightarrow \quad 8^{k+1}-3^{k+1}=5.8 r+5.3^{k}
$$

$$
\Rightarrow \quad 8^{k+1}-3^{k+1}=5\left(8 r+3^{k}\right)
$$

$$
\Rightarrow \quad 8^{k+1}-3^{k+1}=5 u
$$

As $r, k \in \mathbb{N}, u=8 r+3^{k} \in \mathbb{N}$.
Hence, $P(k)$ true $\Rightarrow P(k+1)$ true
' $P(1)$ true' and $' P(k)$ true $\Rightarrow P(k+1)$ true' together imply, by the $P M I$, that $P(n)$ is true $\forall n \in \mathbb{N}$

Example 3

Prove by induction that $2^{3 n+2}+5^{n+1}$ is divisible by $3 \forall n \in \mathbb{N}$.

$$
P(n): 2^{3 n+2}+5^{n+1}=3 w \text { (for some } w \in \mathbb{N} \text {) }
$$

Base Case

$$
\text { As } 2^{3+2}+5^{1+1}=32+25=57=3.19, P(1) \text { is true }
$$

Inductive Step

Assume $P(k)$ is true for some $k \in \mathbb{N}$, i.e. assume that :

$$
2^{3 k+2}+5^{k+1}=3 r(\text { for some } r \in \mathbb{N}) \longleftarrow \begin{aligned}
& \text { Inductive } \\
& \text { Hypothesis }
\end{aligned}
$$

$$
\begin{gathered}
\text { RTP statement } \\
2^{3(k+1)+2}+5^{k+2}=3 u(\text { for some } u \in \mathbb{N})
\end{gathered}
$$

$$
\begin{aligned}
& 2^{3(k+1)+2}+5^{k+2}=2^{3 k+3+2}+5^{k+2} \\
\Rightarrow & 2^{3(k+1)+2}+5^{k+2}=2^{3 k+2} \cdot 2^{3}+5^{k+2} \\
\Rightarrow & 2^{3(k+1)+2}+5^{k+2}=\left(3 r-5^{k+1}\right) \cdot 8+5^{k+2}
\end{aligned}
$$

$$
\Rightarrow \quad 2^{3(k+1)+2}+5^{k+2}=3.8 r-8.5^{k+1}+5.5^{k+1}
$$

$$
\Rightarrow \quad 2^{3(k+1)+2}+5^{k+2}=3.8 r-3.5^{k+1}
$$

$$
\Rightarrow \quad 2^{3(k+1)+2}+5^{k+2}=3\left(8 r-5^{k+1}\right)
$$

$$
\Rightarrow \quad 2^{3(k+1)+2}+5^{k+2}=3 u
$$

As $r, k \in \mathbb{N}, u=8 r-5^{k+1} \in \mathbb{N}\left(\right.$ as $\left.3 r>5^{k+1}\right)$.
Hence, $P(k)$ true $\Rightarrow P(k+1)$ true
' $P(1)$ true' and $' P(k)$ true $\Rightarrow P(k+1)$ true' together imply, by the PMI, that $P(n)$ is true $\forall n \in \mathbb{N}$

Prove by mathematical induction that $\forall \mathrm{n} \in \mathbb{N}$:

1) $5^{2 n}-1$ is divisible by 24 .
2) $n^{3}+5 n+6$ is divisible by 3 .
3) $4^{3 n}+8$ is divisible by 9 .
4) $4^{n+1}+5^{2 n-1}$ is divisible by 21 .
5) $5^{2 n}-4^{2 n}$ is divisible by 9 .
6) $7^{2 n}+16 n-1$ is divisible by 64 .
