15/9/17

Unit 1 : Differential Equations - Lesson 2

Integrating Factor Differential Equations

LI

- Solve DEs that can be written in the form $y^{\prime}+P(x) y=f(x)$. SC
- Integrate.
- Product Rule in reverse.
$\mathrm{A} 1^{\text {st }}$-order linear differential equation is a differential equation that can be written in the form :

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

Solving a $1^{\text {st }}$-order linear differential equation requires the following steps:

- Find the integrating factor (IF) $=e^{\int P(x) d x}$.
- Multiply $\underset{\sim}{2}$ by the IF.
- Integrate both sides writ x and solve for y.

Example 1
Obtain the general solution of,

$$
\frac{d y}{d x}-\frac{5}{x} y=3 x
$$

$$
\begin{array}{rlrl}
& & P(x) & =-\frac{5}{x} \\
& =-5 \ln |x|+C \\
& \int P(x) d x & =-5 \int \frac{1}{x} d x \\
\therefore \quad \text { IF } & =e^{\int P(x) d x} \\
\Rightarrow \quad \text { IF } & =e^{-5 \ln |x|+c} \\
\Rightarrow \quad \text { IF } & =e^{c} e^{\ln |x|^{-5}} \\
\Rightarrow & \text { IF } & =A x^{-5}\left(A=e^{c}\right)
\end{array}
$$

$$
\frac{d y}{d x}-\frac{5}{x} y=3 x
$$

$$
\therefore A x^{-5} \frac{d y}{d x}-\frac{5}{x} y \cdot A x^{-5}=3 x \cdot A x^{-5}
$$

$$
\Rightarrow \quad x^{-5} \frac{d y}{d x}-x^{-5} \frac{5}{x} y=3 x^{-4} \quad \begin{aligned}
& A=e^{c}>0 ; \\
& \text { so, } A \neq 0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad x^{-5} \frac{d y}{d x}-5 x^{-6} y=3 x^{-4} \\
& \therefore \quad \frac{d}{d x}\left(x^{-5} y\right)=3 x^{-4}
\end{aligned}
$$

Integrating both sides wrt x gives,

$$
\begin{array}{rlrl}
& & x^{-5} y & =-x^{-3}+C \\
\Rightarrow & y & =-x^{2}+C x^{5}
\end{array}
$$

Example 2
Obtain the general solution of,

$$
y^{\prime} \cos x+y \sin x=1
$$

Dividing by $\cos x$ gives,

$$
y^{\prime}+(\tan x) y=\sec x
$$

| $P(x)$ | $=\tan x$ |
| ---: | :--- | ---: | :--- |
| $\therefore \quad \int P(x) d x$ | $=\int \tan x d x$ |
| | $=-\ln \|\cos x\|+C$ |
| IF | $=e^{\int \rho(x) d x}$ |
| $\therefore \quad$ IF | $=e^{-\ln \|\cos x\|+c}$ |
| $\Rightarrow \quad$ IF | $=e^{c} e^{\ln \|\cos x\|^{-1}}$ |
| $\Rightarrow \quad$ IF | $=A \sec x$ |

$$
y^{\prime}+(\tan x) y=\sec x
$$

Multiplying by $A \sec x$ and cancelling A gives, $(\sec x) y^{\prime}+(\sec x \tan x) y=\sec ^{2} x$ $\therefore \quad(\sec x \cdot y)^{\prime}=\sec ^{2} x$

Integrating both sides wrt \times gives,

$$
\begin{aligned}
\sec x \cdot y & =\tan x+C \\
\Rightarrow \quad y & =\sin x+C \cos x
\end{aligned}
$$

Example 3

Obtain the general solution of,

$$
\begin{aligned}
y^{\prime}+7 y & =4 e^{-7 x} \\
\therefore \quad P(x) & =7 \\
\therefore \quad \int P(x) d x & =\int 7 d x \\
& =7 x+c \\
\therefore \quad \text { IF } & =e^{\int p(x) d x} \\
\Rightarrow \quad \text { IF } & =e^{7 x+c} \\
\Rightarrow \quad \text { IF } & =e^{c} e^{7 x} \\
\Rightarrow \quad \text { IF } & =A e^{7 x}
\end{aligned}
$$

$$
y^{\prime}+7 y=4 e^{-7 x}
$$

Multiplying by $A e^{7 x}$ and cancelling A gives,

$$
\begin{aligned}
\Rightarrow & e^{7 x} y^{\prime}+7 e^{7 x} y=4 \\
\Rightarrow & \\
& \left(e^{7 x} y\right)^{\prime}=4
\end{aligned}
$$

Integrating both sides writ x gives,

$$
\begin{aligned}
e^{7 x} y & =4 x+c \\
\Rightarrow \quad y & =4 \times e^{-7 x}+C e^{-7 x}
\end{aligned}
$$

AH Maths - MiA (2 ${ }^{\text {nd }}$ Edn.)

$$
\begin{aligned}
& \text { - pg. 136-7 Ex. 8.3 Q } 1 a-e, g, k \\
& \text { r,s, } 2 a, b, d, e, f, 3 a, b, e .
\end{aligned}
$$

Ex. 8.3

1 Solve each of these first-order linear differential equations.
a $\frac{\mathrm{d} y}{\mathrm{~d} x}+y=e^{x}$
b $\frac{\mathrm{d} y}{\mathrm{~d} x}+3 y=e^{-x}$
c $\frac{\mathrm{d} y}{\mathrm{~d} x}+4 y=\sin x$
d $\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{y}{x}=e^{x}$
e $\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{3 y}{x}=x^{3}$
$\operatorname{g} \frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{y}{x-1}=x+1$
$\mathrm{k} \frac{\mathrm{d} y}{\mathrm{~d} x}+y \sin x=3 \sin x$
r $\frac{\mathrm{d} y}{\mathrm{~d} x}-\frac{y}{x}=\frac{x}{x^{2}+1}$
$\mathrm{s} \frac{\mathrm{d} y}{\mathrm{~d} x}-\frac{y}{x}=\frac{x}{\sqrt{4-x^{2}}}$

2 Find general solutions for these differential equations.
a $3 \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=6 e^{x}$
b $x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=\cos x$
d $\frac{1}{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+(x+1) y=x+1$
e $e^{x} \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=1$
f $\cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}+3 y \sin x=2$

3 Find the particular solution to each equation with the given initial conditions.
a $\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{y}{2}=e^{x}$; when $x=0, y=e$
b $\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{y}{x}=\sin x$; when $x=\pi, y=2$
e $\frac{\mathrm{d} y}{\mathrm{~d} x}-y \ln x=x^{x} \sin x ;$ when $x=\pi, y=\pi^{\pi}$

Answers to AH Maths (MiA), pg. 136-7, Ex. 8.3

$$
\begin{aligned}
& 1 \text { a } y=\frac{e^{x}}{2}+\frac{c}{e^{x}} \\
& \text { b } y=\frac{1}{2 e^{x}}+\frac{c}{e^{3 x}} \\
& \text { c } \quad y=\frac{1}{17}(4 \sin x-\cos x)+\frac{c}{e^{4 x}} \\
& \text { d } y=e^{x}-\frac{e^{x}}{x}+\frac{c}{x} \\
& \text { e } y=\frac{x^{4}}{7}+\frac{c}{x^{3}} \\
& \text { g } \quad y=\frac{x^{3}-3 x}{3(x-1)}+\frac{c}{x-1} \\
& \text { k } y=3+c e^{\cos x} \\
& \text { r } \quad y=x \tan ^{-1} x+x c \\
& \text { s } \quad y=x \sin ^{-1}\left(\frac{x}{2}\right)+x c \\
& 2 \text { a } \quad y=\frac{3}{2} e^{x}+c e^{-\frac{x}{3}} \\
& \text { b } y=\frac{\sin x}{x}+\frac{c}{x} \\
& \text { d } y=1+\frac{c}{e^{x^{2}+2 x}} \\
& \text { e } y=1+c e^{e^{-x}} \\
& \text { f } \quad y=\frac{2}{3} \sin x+\frac{4}{3} \sin x \cos ^{2} x+c \cos ^{3} x \\
& 3 \text { a } y=\frac{2}{3} e^{x}+\frac{e-\frac{2}{3}}{e^{\frac{x}{2}}} \\
& \text { b } y=\frac{\sin x-x \cos x+\pi}{x} \\
& \text { e } y=\frac{1}{2} x^{x}(\sin x-\cos x)+\frac{1}{2} e^{\pi-x} x^{x}
\end{aligned}
$$

