Integrals of More Complicated Expressions

LI

- Integrate expressions involving combinations of powers of x.

SC

- Sum and Difference Rules.
- Indices Rules.
- Expanding brackets.
- Splitting algebraic fractions.

Example 1
Integrate $y=\frac{1}{3 x^{4}}$.

$$
\begin{aligned}
\int \frac{1}{3 x^{4}} d x & =\frac{1}{3} \int \frac{1}{x^{4}} d x \\
& =\frac{1}{3} \int x^{-4} d x \\
& =\frac{1}{3}\left(\frac{x^{-3}}{-3}\right)+C
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{x^{-3}}{9}+c \\
& \left(=-\frac{1}{9 x^{3}}+c\right)
\end{aligned}
$$

Example 2

Integrate $9 \sqrt{x}-10 \sqrt{x^{3}}$.

$$
\begin{aligned}
& \int 9 \sqrt{x}-10 \sqrt{x^{3}} \mathrm{~d} x \\
= & \int 9 x^{1 / 2}-10 x^{3 / 2} \mathrm{~d} x \\
= & \frac{9 x^{3 / 2}}{3 / 2}-\frac{10 x^{5 / 2}}{5 / 2}+C \\
= & 6 x^{3 / 2}-4 x^{5 / 2}+C \\
(= & \left.6 \sqrt{x^{3}}-4 \sqrt{x^{5}}+C\right)
\end{aligned}
$$

Example 3

Integrate $x\left(x^{2}+7\right)$.
$\int x\left(x^{2}+7\right) d x=\int x^{3}+7 x d x$

$$
=\frac{x^{4}}{4}+\frac{7 x^{2}}{2}+c
$$

Example 4
Integrate $\frac{x-1}{x \sqrt{x}}$.

$$
\begin{aligned}
& \int \frac{x-1}{x \sqrt{x}} d x \\
= & \int \frac{x-1}{x^{3 / 2}} d x \\
= & \int \frac{x}{x^{3 / 2}}-\frac{1}{x^{3 / 2}} d x \\
= & \int x^{-1 / 2}-x^{-3 / 2} d x \\
= & \frac{x^{1 / 2}}{1 / 2}-\frac{x^{-1 / 2}}{-1 / 2}+C \\
= & 2 x^{1 / 2}+2 x^{-1 / 2}+C \\
= & 2 \sqrt{x}+\frac{2}{\sqrt{x}}+C
\end{aligned}
$$

Example 5

Prove that the integral of a non-zero constant function is a linear function.

Let $y=f(x)$ be a non-zero constant function, is. let,

$$
\begin{aligned}
y & =k \quad(k \neq 0) \\
\therefore \quad \int y d x & =\int k d x \\
& =k x+c
\end{aligned}
$$

As the integral is of the form $k x+C$ $(k \neq 0)$, the integral is a linear function.

Example 6

Prove that the integral of a linear function is a quadratic function.

Let $y=f(x)$ be a linear function, i. e. let,

$$
\begin{aligned}
y & =a x+b \quad(a \neq 0) \\
\int y d x & =\int a x+b d x \\
& =\frac{1}{2} a x^{2}+b x+c
\end{aligned}
$$

As the integral is of the form $A x^{2}+b x+C$ $(A \neq 0)$, the integral is a quadratic function.

CfE Higher Maths

pg. 269-270 Ex. 11B Q 1,3-7

Questions

1 For each of these expressions
i write the expression in integrable form
ii integrate with respect to x.
a $(2 x-1)(x-3)$
b $\quad x(x-4)(x+1)$
c $(x+2)\left(x^{2}+3 x-4\right)$
d $5 x^{2}(x-3)^{2}$
e $(x-2)(x+3)^{2}$

3 For each of these expressions
i write the expression in integrable form
ii integrate with respect to x.
a $\frac{6}{x^{3}}$
b $\frac{1}{5 x^{4}}$
c $y=\frac{7}{3 x^{8}}$
d $\frac{4}{x^{2}}-x^{2}+5$

4 For each of these expressions
i write the expression in integrable form
ii integrate with respect to x.
a $3 \sqrt{x}$
b $\sqrt[3]{x^{4}}$
c $6(\sqrt[5]{x})$
d $\frac{4}{\sqrt{x}}$
e $\frac{1}{x \sqrt{x}}$
f $\frac{3}{\sqrt[4]{x}}$
g $\frac{10}{\sqrt{x^{5}}}$
h $\frac{1}{2\left(\sqrt[4]{x^{3}}\right)}$

5 For each of the expressions:
i write the expression in integrable form
ii integrate with respect to x.
a $\frac{x^{6}-4}{x^{2}}$
b $\frac{9 x-x^{5}}{x^{4}}$
c $\frac{x^{4}-x-3}{x^{4}}$
d $y=\frac{5-2 x^{4}}{3 x^{2}}$
e $\frac{(x-2)(x+3)}{x^{4}}$
f $\frac{(x-1)(3 x+2)^{2}}{3 x^{5}}$

6 Integrate with respect to x.
a $x(\sqrt{x}-4)$
b $\frac{2}{x}\left(x^{2}-\frac{1}{x}\right)$
c $\quad\left(1-x^{2}\right)\left(2+\frac{1}{\sqrt{x}}\right)$
d $\left(\frac{5}{x}-\frac{x}{5}\right)^{2}$
e $\frac{1-x^{3}}{\sqrt{x}}$
f $\frac{(x+1)(2-x)}{x \sqrt{x}}$

7 Integrate with respect to the given variable.
a $\frac{2}{x^{8}}$
b $\frac{1}{5 t^{2}}$
c $(p-1)(p+2)(p-4)$
d $6\left(\sqrt[3]{x^{2}}\right)$
e $\frac{2}{3 \sqrt{w}}$
f $\frac{3-x^{4}}{x^{3}}$
g $2 t^{3}(4-t)$
h $\frac{1}{u^{2}}-3 \sqrt{u}+2$
i $\frac{3}{4(\sqrt[5]{x})}$

Answers

1 a $2 x^{2}-7 x+3$
$\frac{2 x^{3}}{3}-\frac{7 x^{2}}{2}+3 x+c$
b $x^{3}-3 x^{2}-4 x$
$\frac{x^{4}}{4}-x^{3}-2 x^{2}+c$
c $\quad x^{3}+5 x^{2}+2 x-8$

$$
\frac{x^{4}}{4}+\frac{5 x^{3}}{3}+x^{2}-8 x+c
$$

d $5 x^{4}-30 x^{3}+45 x^{2}$

$$
x^{5}-\frac{15 x^{4}}{2}+15 x^{3}+c
$$

e $x^{3}+4 x^{2}-3 x-18$

$$
\frac{x^{4}}{4}+\frac{4 x^{3}}{3}-\frac{3 x^{2}}{2}-18 x+c
$$

$$
\begin{array}{ll}
3 \text { a } & 6 x^{-3} \\
& -\frac{3}{x^{2}}+c
\end{array}
$$

b $\frac{1}{5} x^{-4}$

$$
-\frac{1}{15} x^{-3}+c
$$

c $\frac{7}{3} x^{-8}$
$-\frac{1}{3 x^{7}}+c$
d $\begin{aligned} & 4 x^{-2}-x^{2}+5 \\ & -4 x^{-1}-\frac{x^{3}}{3}+5 x+c\end{aligned}$

4 a $3 x^{\frac{1}{2}}$
$2 x^{\frac{3}{2}}+c$
b $x^{\frac{4}{3}}$ $\frac{3 x^{\frac{7}{3}}}{7}+c$
c $6 x^{\frac{1}{5}}$
$5 x^{\frac{6}{5}}+c$
d $4 x^{\frac{-1}{2}}$
$8 \sqrt{x}+c$
e $x^{\frac{3}{2}}$
$-\frac{2}{\sqrt{x}}+c$
f $3 x^{\frac{1}{4}}$
$4 x^{\frac{3}{4}}+c$
g $10 x^{\frac{-5}{2}}$
$-\frac{20}{3 x^{\frac{3}{2}}}+c$
h $\frac{1}{2} x^{\frac{33}{4}}$
$2 x^{\frac{1}{4}}+c$

$$
\begin{aligned}
& 5 \text { a } x^{4}-4 x^{-2} \\
& \frac{4}{x}+\frac{x^{5}}{5}+c \\
& \text { b } 9 x^{-3}-x \\
& -\frac{9}{2 x^{2}}-\frac{x^{2}}{2}+c \\
& \text { C } \quad 1-x^{-3}-3 x^{-4} \\
& x+\frac{1}{2 x^{2}}+\frac{1}{x^{3}}+c \\
& \text { d } \frac{5}{3} x^{-2}-\frac{2}{3} x^{2} \\
& \frac{1}{3}\left(-\frac{5}{x}-\frac{2 x^{3}}{3}\right)+c \\
& \text { e } x^{-2}+x^{-3}-6 x^{-4} \\
& \frac{2}{x^{3}}-\frac{1}{2 x^{2}}-\frac{1}{x}+c \\
& \text { f } \quad 3 x^{-2}+x^{-3}-\frac{8}{3} x^{-4}-\frac{4}{3} x^{-5} \\
& \frac{1}{3 x^{4}}+\frac{8}{9 x^{3}}-\frac{1}{2 x^{2}}-\frac{3}{x}+c \\
& 6 \text { a }-2 x^{2}+\frac{2 x^{\frac{5}{2}}}{5}+c \\
& \text { b } \quad x^{2}+\frac{2}{x}+c \\
& \text { c } 2 \sqrt{x}+2 x-\frac{2}{3} x^{3}-\frac{2}{5} x^{\frac{5}{2}}+c \\
& \text { d }-\frac{25}{x}-2 x+\frac{x^{3}}{75}+c \\
& \text { e } 2 \sqrt{x}-\frac{2 x^{\frac{7}{2}}}{7}+c \\
& \text { f }-\frac{4}{\sqrt{x}}+2 \sqrt{x}-\frac{2 x^{\frac{3}{2}}}{3}+c \\
& 7 \text { a }-\frac{2}{7 x^{7}}+c \\
& \text { b } \quad-\frac{1}{5 t}+c \\
& \text { c } \quad \frac{p^{4}}{4}-p^{3}-3 p^{2}+8 p+c \\
& \text { d } \frac{18 x^{\frac{5}{3}}}{5}+c \\
& \text { e } \frac{4 \sqrt{w}}{3}+c \\
& \text { f }-\frac{3}{2 x^{2}}-\frac{x^{2}}{2}+c \\
& \text { g } \quad-2\left(\frac{t^{5}}{5}-t^{4}\right)+c \\
& \text { h }-2 u^{\frac{3}{2}}+2 u-\frac{1}{u}+c \\
& \text { i } \frac{15 x^{\frac{4}{5}}}{16}+c
\end{aligned}
$$

