23 / 5 / 16

Differentiation and Properties of Functions - Lesson 2

Increasing and Decreasing Functions

LI

- Decide whether or not a function is increasing or decreasing at a specific x - value.
- ullet Decide for which x values a function is increasing or decreasing.

<u>SC</u>

- Differentiate functions.
- Graphs of linear, quadratic and cubic functions.
- Solving quadratic inequations.

A function y = f(x) is increasing at x = a if:

$$\left(\frac{dy}{dx}\right)_{x=0}$$
 > 0

A function y = f(x) is decreasing at x = a if:

$$\left(\frac{dy}{dx}\right)_{x=0}$$
 < 0

An interval is a set of values (usually x)

A function is increasing on an interval if the derivative is positive for every x - value in that interval

A function is decreasing on an interval if the derivative is negative for every x - value in that interval

A function is stationary at x = a if:

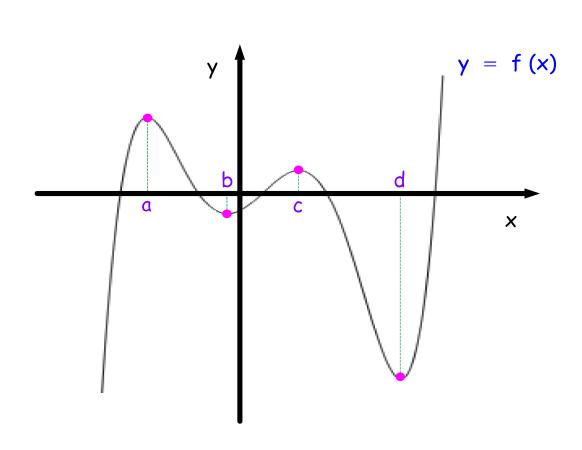
$$\left(\frac{dy}{dx}\right)_{x=0} = C$$

Non-increasing

$$\left(\frac{dy}{dx}\right) \leq 0$$

Non-decreasing

$$\left(\frac{dy}{dx}\right) \geq 0$$



- f is stationary when x = a, b, c, d.
- f is increasing when x < a, b < x < c and x > d.
- f is decreasing when a < x < b and c < x < d.
- f is non-increasing when $a \le x \le b$ and $c \le x \le d$.
- f is non-decreasing when $x \le a, b \le x \le c$ and $x \ge d$.

Show that the function $f(x) = x^3 - 6x + 15$ is increasing when x = 2.

$$f(x) = x^3 - 6x + 15$$

$$\therefore$$
 f'(x) = 3 x² - 6

$$\therefore$$
 f'(2) = 3(2)² - 6

$$\Rightarrow f'(2) = 6$$

As
$$f'(2) = 6 > 0$$
, f is increasing at $x = 2$

Show that the function $g(x) = x^2 + \frac{64}{x}$

is decreasing when x = -4.

$$g(x) = x^{2} + \frac{64}{x}$$

$$g(x) = x^{2} + 64x^{-1}$$

$$g'(x) = 2x - 64x^{-2}$$

$$g'(x) = 2x - \frac{64}{x^{2}}$$

$$\therefore g'(-4) = 2(-4) - \frac{64}{(-4)^2}$$

$$\Rightarrow g'(-4) = -8 - 4$$

$$\Rightarrow g'(-4) = -12$$

As
$$g'(-4) = -12 < 0$$
, g is decreasing at $x = -4$.

Show that $m(x) = \frac{11}{x^7}$ is decreasing

for all $x \neq 0$.

$$m(x) = \frac{11}{x^7}$$

$$m(x) = 11 x^{-7}$$

$$m'(x) = -77 x^{-8}$$

$$\Rightarrow m'(x) = -\frac{77}{x^8}$$

When x is positive or negative, $x^8 > 0$; hence,

$$\frac{77}{x^8}$$
 > 0; hence, $-\frac{77}{x^8}$ = m'(x) < 0.

Thus, m is decreasing for all $x \neq 0$.

Show that $Q(x) = x^3 + 3x^2 + 4x - 19$ is always increasing.

Q(x) =
$$x^3 + 3x^2 + 4x - 19$$

 \therefore Q'(x) = $3x^2 + 6x + 4$

To show that Q is always increasing, we must show that the quadratic $3 \times^2 + 6 \times + 4$ is always positive; this means showing that this quadratic is always above the x-axis; this means showing that this quadratic has no real roots; this means showing that the discriminant of this quadratic is always negative.

Discriminant (D) of $3 \times ^2 + 6 \times + 4$ is,

$$D = 6^{2} - 4(3)(4)$$
 $\Rightarrow D = 36 - 48$
 $\Rightarrow D = -12 < 0$

As D < 0 for all x values, $3x^2 + 6x + 4 = 0$ has no real roots; hence, $3x^2 + 6x + 4$ does not cross the x - axis; hence, m '(x) > 0 for all x; hence, m is always increasing.

Find the range of values of x for which $r(x) = x(x^3 - 32)$ is increasing.

$$r(x) = x(x^3 - 32)$$

$$r(x) = x^4 - 32 x$$

$$r'(x) = 4x^3 - 32$$

r increasing means r'(x) > 0. So,

$$4 x^3 - 32 > 0$$

$$\Rightarrow$$
 4 $x^3 > 32$

$$\Rightarrow$$
 $x^3 > 8$

$$\Rightarrow$$
 $x > 2$

Find the range of values of x for which

$$T(x) = x^3 + \frac{5}{2}x^2 - 2x + 7 \text{ is}$$
:

- (a) decreasing.
- (b) increasing.
- (c) non-decreasing.
- (d) non-increasing.

$$T(x) = x^3 + \frac{5}{2}x^2 - 2x + 7$$

$$T'(x) = 3x^2 + 5x - 2$$

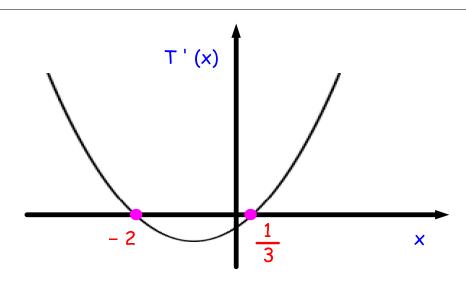
To find where T' is $< 0, > 0, \ge 0$ and ≤ 0 , we need to sketch the graph of the quadratic T'(x) = $3x^2 + 5x - 2$.

To do this, find the roots (if any) of T'(x) = 0. The discriminant of $3x^2 + 5x - 2$ is 49 > 0, so there are 2 distinct real roots.

$$3 x^{2} + 5 x - 2 = 0$$

$$\therefore (3 x - 1) (x + 2) = 0$$

$$\Rightarrow x = -2, x = \frac{1}{3}$$



(a) T is decreasing when T' < 0, so,

T is decreasing when $-2 < x < \frac{1}{3}$

(b) T is increasing when T' > 0, so,

T is increasing when x < -2 and $x > \frac{1}{3}$

(c) T is non-decreasing when $T' \geq 0$, so,

T is non-decreasing when $x \le -2$ and $x \ge \frac{1}{3}$

(d) T is non-increasing when $T' \leq 0$, so,

T is non-increasing when $-2 \le x \le \frac{1}{3}$

CfE Higher Maths

pg. 250 - 251 Ex. 10B Q 1-12, 14-16, 19-21