16 / 9 / 16

Functions - Lesson 2

Functions - Composition

LI

- Know what the composition of two functions is.
- Work out compositions of linear, quadratic, polynomial, trigonometric, exponential and logarithmic functions.

SC

• Algebra.

If the range of a function f is contained in the domain of a function g, then the outputs for f can be used as the inputs for g.

More precisely, if f is a function from A to B,

$$f: A \longrightarrow B$$

and g is a function from C to D,

$$q: C \longrightarrow D$$

and if ran f is contained within dom g (= C), then it makes sense to construct another function called the composition of g with f (denoted by $g \circ f$, and pronounced 'g circle f' or 'g of f') whose values in D are written as,

We don't normally use $g \circ f$ in Higher Maths.

The composition of g with f is usually not the same as the composition of f with g

If
$$f(x) = 2x + 9$$
 and $g(x) = x^2$, find:

- (a) f(g(x)).
- (b) g(f(x)).
- (c) f (f (x)).
- (d) g(g(x)).

(a)
$$f(g(x)) = f(x^2)$$

= $2(x^2) + 9$
= $2x^2 + 9$

(b)
$$g(f(x)) = g(2x + 9)$$

= $(2x + 9)^2$
= $4x^2 + 36x + 81$

(c)
$$f(f(x)) = f(2x + 9)$$

= $2(2x + 9) + 9$
= $4x + 18 + 9$
= $4x + 27$

(d)
$$g(g(x)) = g(x^{2})$$

= $(x^{2})^{2}$
= x^{4}

If $f(x) = \frac{x}{1-x}$, find (f(f(x)) as a fraction in its simplest form.

$$f(f(x)) = f\left(\frac{x}{1-x}\right)$$

$$= \frac{\left(\frac{x}{1-x}\right)}{1-\left(\frac{x}{1-x}\right)}$$

$$= \frac{x}{(1-x)-x}$$

$$= \frac{x}{1-2x}$$

If $p(x) = \sin x$ and $n(x) = x^3$, find:

- (a) p(n(x)).
- (b) n(p(x)).
- (c) n(n(x)).
- (d) p(p(x)).
- (a) $p(n(x)) = p(x^3)$ = $sin(x^3)$
- (b) $n(p(x)) = n(\sin x)$

$$= (\sin x)^3$$
$$= \sin^3 x$$

(c)
$$n(n(x)) = n(x^3)$$

= $(x^3)^3$
= x^9

(d)
$$p(p(x)) = p(\sin x)$$

= $\sin(\sin x)$

If $f(x) = \sqrt{x + 2}$ and g(x) = 3 - x, find h(x) = f(g(x)) and state a suitable domain for h.

h (x) = f (g (x))
= f (3 - x)
=
$$\sqrt{(3 - x) + 2}$$

= $\sqrt{5 - x}$

We require $5 - x \ge 0$, i.e. we need $x \le 5$. So,

$$dom h = \{x \in \mathbb{R} : x \leq 5\}$$

If $D(x) = \log_3 x$ and $g(x) = x^2 + 4$, find D(g(x)) and g(D(x)).

$$D(g(x)) = D(x^2 + 4)$$

= $\log_3(x^2 + 4)$

$$g(D(x)) = g(\log_3 x)$$

= $(\log_3 x)^2 + 4$

CfE Higher Maths

pg. 87-8 Ex. 4B All Q

pg. 91 Ex. 4D Q 3 - 6