$16 / 9 / 16$

Functions - Lesson 2

Functions - Composition

LI

- Know what the composition of two functions is.
- Work out compositions of linear, quadratic, polynomial, trigonometric, exponential and logarithmic functions.

SC

- Algebra.

If the range of a function f is contained in the domain of a function g, then the outputs for f can be used as the inputs for g.

More precisely, if f is a function from A to B,

$$
f: A \longrightarrow B
$$

and g is a function from C to D,

$$
g: C \longrightarrow D
$$

and if ran f is contained within domg $(=C)$, then it makes sense to construct another function called the composition of g with f (denoted by $g \circ f$, and pronounced ' g circle f ' or ' g of f ') whose values in D are written as,

$$
g(f(x))
$$

We don't normally use $g \circ f$ in Higher Maths.

The composition of g with f is usually not the same as the composition of f with g

Example 1

If $f(x)=2 x+9$ and $g(x)=x^{2}$, find:
(a) $f(g(x))$.
(b) $g(f(x))$.
(c) $f(f(x))$.
(d) $g(g(x))$.
(a) $f(g(x))=f\left(x^{2}\right)$

$$
\begin{aligned}
& =2\left(x^{2}\right)+9 \\
& =2 x^{2}+9
\end{aligned}
$$

(b) $\quad g(f(x))=g(2 x+9)$

$$
=\begin{aligned}
& (2 x+9)^{2} \\
& =4 x^{2}+36 x+81
\end{aligned}
$$

(c) $\quad f(f(x))=f(2 x+9)$

$$
\begin{aligned}
& =2(2 x+9)+9 \\
& =4 x+18+9 \\
& =4 x+27
\end{aligned}
$$

(d) $\quad g(g(x))=g\left(x^{2}\right)$

$$
\begin{aligned}
& =\left(x^{2}\right)^{2} \\
& =x^{4}
\end{aligned}
$$

Example 2

If $f(x)=\frac{x}{1-x}$, find $(f(f(x))$ as a fraction
in its simplest form.

$$
\begin{aligned}
f(f(x)) & =f\left(\frac{x}{1-x}\right) \\
& =\frac{\left(\frac{x}{1-x}\right)}{1-\left(\frac{x}{1-x}\right)} \\
& =\frac{x}{(1-x)-x} \\
& =\frac{x}{1-2 x}
\end{aligned}
$$

Example 3

If $p(x)=\sin x$ and $n(x)=x^{3}$, find:
(a) $\mathrm{p}(\mathrm{n}(\mathrm{x}))$.
(b) $n(p(x))$.
(c) $n(n(x))$.
(d) $p(p(x))$.
(a) $p(n(x))=p\left(x^{3}\right)$

$$
=\sin \left(x^{3}\right)
$$

(b) $\quad n(p(x))=n(\sin x)$

$$
\begin{array}{r}
=(\sin x)^{3} \\
=\sin ^{3} x
\end{array}
$$

(c) $\quad n(n(x))=n\left(x^{3}\right)$

$$
\begin{aligned}
& =\left(x^{3}\right)^{3} \\
& =x^{9}
\end{aligned}
$$

(d) $p(p(x))=p(\sin x)$

$$
=\sin (\sin x)
$$

Example 4
If $f(x)=\sqrt{x+2}$ and $g(x)=3-x$, find $h(x)=f(g(x))$ and state a suitable domain for h.
$h(x)=f(g(x))$
$=f(3-x)$
$=\sqrt{(3-x)+2}$
$=\sqrt{5-x}$
We require $5-x \geq 0$, i.e. we need $x \leq 5$. So,

$$
\operatorname{dom} h=\{x \in \mathbb{R}: x \leq 5\}
$$

Example 5
If $D(x)=\log _{3} x$ and $g(x)=x^{2}+4$, find
$D(g(x))$ and $g(D(x))$.
$D(g(x))=D\left(x^{2}+4\right)$

$$
=\log _{3}\left(x^{2}+4\right)
$$

$g(D(x))=g\left(\log _{3} x\right)$

$$
=\left(\log _{3} x\right)^{2}+4
$$

CfE Higher Maths

pg. 87-8 Ex. 4B All Q
pg. 91 Ex.4D Q 3-6

