$15 / 2 / 18$
 Vectors, Lines and Planes - Lesson 2

Equations of Planes

LI

- Know the different types of equations for a plane.
- Obtain equations of planes given different starting information.
- Convert between different forms of plane equations.

SC

- Vector product.
- Geometric intuition.

A plane is an infinite 2D space

An equation of a plane can be found in 3 ways:

- 1 point on the plane and a vector at right angles to the plane.
- 2 vectors in the plane and a point on the plane.
- 3 points on the plane.

A vector is parallel to a plane if it lies in the plane

A normal vector to a plane is one that is at right angles to the plane

Cartesian Equation of a Plane

The normal vector \underline{n} is at right angles to $\underline{p}-q$:

$$
\begin{aligned}
\underline{n} \cdot(\underline{p}-\underline{q}) & =0 \\
\underline{n} \cdot \underline{p} & =\underline{n} \cdot \underline{q}
\end{aligned}
$$

Let $d=\underline{n} \bullet q$. Then,

$$
a x+b y+c z=d
$$

If told 2 vectors \underline{a} and \underline{b} and a point on the plane, the vector product of \underline{a} and \underline{b} gives a normal.

If told 3 points A, B and C on the plane, work out two vectors (e.g. $\overrightarrow{A B}$ and $\overrightarrow{A C}$) and vector product these to give a normal.

Vector and Parametric Equations of a Plane

The vector equation of a plane (with parameters t and u) is,

$$
\underline{r}=\underline{a}+\dagger \underline{b}+u \underline{c}
$$

'To get to $\underline{\underline{r}}$, go to \underline{a}, then go a little bit along \underline{b}, then go a little bit along $\mathbf{c}^{\text {.' }}$

If A has coordinates (a_{1}, a_{2}, a_{3}) and the vectors \underline{b} and \underline{c} have the obvious components, the vector equation can be written in parametric form :

$$
\begin{aligned}
\underline{\boldsymbol{r}}= & \left(a_{1}+t b_{1}+u c_{1}\right) \underline{i}+\left(a_{2}+t b_{2}+u c_{2}\right) \mathbf{j} \\
& +\left(a_{3}+t b_{3}+u c_{3}\right) \underline{\mathbf{k}}
\end{aligned}
$$

or
$x=a_{1}+t b_{1}+u c_{1}$
$y=a_{2}+t b_{2}+u c_{2}$
$z=a_{3}+t b_{3}+u c_{3}$

Example 1 (Cartesian equation given normal and 1 point)

Determine a Cartesian equation of the plane passing through the point $(2,3,1)$ and which has normal vector $(2,0,-1)^{\top}$.

$$
\begin{array}{rlrl}
& a x+b y+c z & =d \\
& \therefore & (2)(2)+(3)(0)+(1)(-1) & =d \\
\Rightarrow & & d=3 \\
\therefore & 2 \cdot x+0 \cdot y-1 \cdot z=3 \\
& \therefore & & 2 x-z=3
\end{array}
$$

Example 2 (Cartesian equation given 2 vectors and 1 point)

Find an equation of the plane passing through the point $(3,1,1)$ and containing the vectors $(2,5,1)^{\top}$ and $(2,1,-1)^{\top}$.

A normal to the plane is found by taking the vector product of the given vectors lying in the plane:

$$
\left.\begin{array}{rl}
\underline{n} & =\left(\begin{array}{l}
2 \\
5 \\
1
\end{array}\right) \times\left(\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right)=\left(\begin{array}{c}
-6 \\
4 \\
-8
\end{array}\right) \\
& \therefore \quad(3)(-6)+(1)(4)+(1)(-8)=d \\
& \Rightarrow \\
& \therefore \quad \underline{d}=-22 \\
& \Rightarrow
\end{array} \quad-6 x+4 y-8 z=-22\right\}
$$

Example 3 (Cartesian equation given 3 points)

Determine an equation of the plane containing the points $A(1,-6,0), B(-4,2,-5)$ and $C(-2,4,1)$.

Two vectors lying in the plane are,

$$
\overrightarrow{A B}=(-5,8,-5)^{\top} \text { and } \overrightarrow{A C}=(-3,10,1)^{\top}
$$

A plane normal is (check!) $\underline{n}=(58,20,-26)^{\top}$ and $d=-62$; after simplification, an equation for the plane is,

$$
29 x+10 y-13 z=-31
$$

Example 4 (Vector equation given normal and 1 point)

Determine a vector equation for the plane passing through the point $(2,3,4)$ and which has normal $2 \underline{\mathbf{i}}+4 \underline{\mathbf{k}}$.

Two vectors lying in the plane must be found; this is obtained by finding 2 solutions to the equation,

By inspection, 2 solutions are $(-2,0,1)^{\top}$ and $(0,3,0)^{\top}$; thus, a vector equation is,

$$
\underline{r}=(2,3,4)+t(-2,0,1)^{\top}+u(0,3,0)^{\top}
$$

Example 5

Find a Cartesian equation of the plane which has parametric form,

$$
\underline{\mathbf{r}}=(3-t+2 u) \underline{\mathbf{i}}+(1+7 \boldsymbol{t}-4 u) \mathbf{j}+(1-5 t+u) \underline{\mathbf{k}}
$$

Rewriting the equation as,

$$
\underline{\mathbf{r}}=(3,1,1)++(-1,7,-5)^{\top}+u(2,-4,1)^{\top}
$$

shows that the point $(3,1,1)$ lies in the plane and the vectors $(-1,7,-5)^{\top}$ and $(2,-4,1)^{\top}$ are parallel to the plane. A normal is thus found to be $(-13,-9,-10)^{\top}$. A Cartesian equation is thus,

$$
13 x+9 y+10 z=58
$$

Example 6

Find parametric equations for the plane,

$$
5 x-2 y+4 z=13
$$

A normal is clearly $(5,-2,4)^{\top}$. By inspection, 2 vectors perpendicular to this normal (and hence lying in the plane) are $(2,3,-1)^{\top}$ and $(0,2,1)^{\top}$. Hence,

$$
\begin{aligned}
\underline{\boldsymbol{r}} & =(1,-2,1)+\dagger(2,3,-1)^{\top}+u(0,2,1)^{\top} \\
\Rightarrow \quad \underline{\boldsymbol{r}} & =(1+2 \dagger) \underline{\mathbf{i}}+(-2+3 \dagger+2 u) \mathbf{j}+(1-\dagger+u) \underline{\mathbf{k}}
\end{aligned}
$$

$$
\therefore \quad \begin{aligned}
& x=1+2 t \\
& y=-2+3 t+2 u \\
& z=1-t+u
\end{aligned}
$$

AH Maths - MiA (2 ${ }^{\text {nd }} E d n$.)

- pg. 291-2 Ex. 15.5

Q 1 a, 2 b, 3 a, 4 b, 5 a, b, 10.

- pg. 296 Ex. 15.7

$$
\text { Q } 1 a, 2,4 c, 6 .
$$

Ex. 15.5

1 Find the equation of the plane perpendicular to the given vector and containing the given point. a $2 \mathbf{i}+3 \mathbf{j}+\mathbf{k} ; \mathrm{A}(0,2,6)$

2 Find, in each case, the equation of the plane passing through P and perpendicular to $P Q$.

$$
\text { b } \mathrm{P}(3,-2,1), \mathrm{Q}(5,-7,3)
$$

3 a A plane is parallel to both the vectors $3 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$ and $4 \mathbf{i}-2 \mathbf{k}$.
i By considering the cross product of these vectors, find a vector normal to the plane.
ii The plane contains the point $(1,1,0)$. What is the equation of the plane?
4 Find the equation of the plane passing through the three points

$$
\mathrm{b} \mathrm{D}(2,1,2), \mathrm{E}(0,3,-1) \text { and } \mathrm{F}(3,0,4)
$$

5 Find the equation of the plane passing through the first three points and say whether the fourth point is on the plane.
a $\mathrm{A}(3,1,-4), \mathrm{B}(2,-1,2), \mathrm{C}(-3,2,1)$ and $\mathrm{D}(1,2,3) \quad$ b $\mathrm{M}(1,0,1), \mathrm{N}(1,1,1), \mathrm{S}(2,1,-1)$ and $\mathrm{T}(1,5,1)$
10 Find a unit vector which is normal to the plane which
a is parallel to $4 \mathbf{i}-2 \mathbf{j}+\mathbf{k}$ and $\mathbf{i}+3 \mathbf{j}+3 \mathbf{k}$
b passes through the points $\mathrm{O}(0,0,0), \mathrm{P}(1,-1,2)$ and $\mathrm{Q}(3,2,-1)$.

Ex. 15.7

1 Find the equation of plane ABC in parametric form :
a $\mathrm{A}(2,1,2), \mathrm{B}(0,3,-1), \mathrm{C}(3,0,4)$ [Hint: first find $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$.]

2 A plane passes through the point $\mathrm{A}(1,1,1)$ and is parallel to $2 \mathbf{i}+\mathbf{j}$ and $\mathbf{i}-\mathbf{j}+2 \mathbf{k}$. Find the equation of this plane in parametric form.

4 Find the Cartesian equation of the plane whose parametric equations are c $\mathbf{r}=(4+t-4 u) \mathbf{i}+(-2+t+3 u) \mathbf{j}+(1+t-u) \mathbf{k}$

6 a Show that the point $\mathrm{P}(-4,15,2)$ lies on the plane with parametric equation $\mathbf{r}=(2-t+3 u) \mathbf{i}+(1+4 t-2 u) \mathbf{j}+(2 t+u-3) \mathbf{k}$
b Show also that the point $\mathrm{Q}(-5,13,5)$ does not lie on this plane.

Answers to AH Maths (MiA), pg. 291-2, Ex. 15.5

$$
\begin{array}{lll}
1 & \text { a } & 2 x+3 y+z=12 \\
2 & \mathrm{~b} & 2 x-5 y+2 z=18 \\
3 & \mathrm{a} & 2 \mathbf{i}-\mathbf{j}+4 \mathbf{k} \quad 2 x-y+4 z=1 \\
4 & \mathrm{~b} & x+y=3 \\
5 & \text { a } & 16 x+31 y+13 z=27 \text { no } \quad \mathrm{b} \\
10 & \text { a } & \frac{ \pm 1}{\sqrt{398}}(-9 \mathbf{i}-11 \mathbf{j}+14 \mathbf{k}) \quad \text { b } \quad \frac{ \pm 1}{\sqrt{83}}(-3 \mathbf{i}+7 \mathbf{j}+5 \mathbf{k})
\end{array}
$$

Answers to AH Maths (MiA), pg. 296, Ex. 15.7

1 a $\quad \mathbf{r}=(2-2 t+u) \mathbf{i}+(1+2 t-u) \mathbf{j}+(2-3 t+2 u) \mathbf{k}$
$2 \quad \mathbf{r}=(1+2 t+u) \mathbf{i}+(1+t-u) \mathbf{j}+(1+2 u) \mathbf{k}$
4 с $4 x+3 y-7 z=3$
6 a Verification, $t=3 u=-1 \quad$ b Proof

