Derivatives of More Complicated Expressions

LI

- Differentiate expressions involving combinations of powers of x.

SC

- Sum and Difference Rules.
- Indices Rules.
- Expanding brackets.
- Splitting algebraic fractions.

Example 1

Differentiate $y=\frac{4}{x^{3}}$.

$$
y=\frac{4}{x^{3}}
$$

$$
y=4 x^{-3}
$$

$$
\therefore \quad \begin{aligned}
y^{\prime} & =-12 x^{-4} \\
\left(y^{\prime}\right. & \left.=-\frac{12}{x^{4}}\right)
\end{aligned}
$$

Example 2
Differentiate $y=-\frac{7}{2 x^{6}}$.

$$
\begin{aligned}
y & =-\frac{7}{2 x^{6}} \\
y & =-\frac{7}{2} x^{-6} \\
\therefore y^{\prime} & =21 x^{-7} \\
y^{\prime} & \left.=\frac{21}{x^{7}}\right)
\end{aligned}
$$

Example 3

Differentiate $y=(x+2)(x-7)$.

$$
\begin{aligned}
y & =(x+2)(x-7) \\
y & =x^{2}+2 x-7 x-14 \\
y & =x^{2}-5 x-14 \\
\therefore \quad y^{\prime} & =2 x-5
\end{aligned}
$$

Example 4
Differentiate $y=\frac{3-x^{5}}{4 x^{7}}$.

$$
\begin{aligned}
& y=\frac{3-x^{5}}{4 x^{7}} \\
& y=\frac{3}{4 x^{7}}-\frac{x^{5}}{4 x^{7}} \\
& y=\frac{3}{4} x^{-7}-\frac{1}{4} x^{-2}
\end{aligned}
$$

$$
\therefore \begin{aligned}
& y^{\prime}=-\frac{21}{4} x^{-8}+\frac{1}{2} x^{-3} \\
& \left(y^{\prime}=-\frac{21}{4 x^{8}}+\frac{1}{2 x^{3}}\right)
\end{aligned}
$$

Example 5

Differentiate $y=\frac{(x-1)(x+9)}{x^{2}}$.

$$
\begin{aligned}
y & =\frac{(x-1)(x+9)}{x^{2}} \\
y & =\frac{x^{2}-x+9 x-9}{x^{2}} \\
y & =\frac{x^{2}+8 x-9}{x^{2}} \\
y & =\frac{x^{2}}{x^{2}}+\frac{8 x}{x^{2}}-\frac{9}{x^{2}} \\
y & =1+8 x^{-1}-9 x^{-2} \\
\therefore y^{\prime} & =-8 x^{-2}+18 x^{-3} \\
y^{\prime} & \left.=-\frac{8}{x^{2}}+\frac{18}{x^{3}}\right)
\end{aligned}
$$

Example 6
Differentiate $y=(3-\sqrt{x})\left(1+\frac{1}{\sqrt{x}}\right)$.

$$
y=(3-\sqrt{x})\left(1+\frac{1}{\sqrt{x}}\right)
$$

$$
y=3+\frac{3}{\sqrt{x}}-\sqrt{x}-1
$$

$$
y=2+3 x^{-1 / 2}-x^{1 / 2}
$$

$$
\left.\therefore \begin{array}{l}
y^{\prime}=-\frac{3}{2} x^{-3 / 2}-\frac{1}{2} x^{-1 / 2} \\
\left.y^{\prime}=-\frac{3}{2 x^{3 / 2}}-\frac{1}{2 x^{1 / 2}}\right) \\
y^{\prime}=-\frac{3}{2 \sqrt{x^{3}}}-\frac{1}{2 \sqrt{x}}
\end{array}\right)
$$

Example 7

Prove that the derivative of a quadratic function is a linear function.

Let $y=f(x)$ be a quadratic function, i.e. let,

$$
y=a x^{2}+b x+c \quad(a \neq 0)
$$

$\therefore y^{\prime}=2 a x+b$
As $a \neq 0,2 a \neq 0$; hence, the
derivative $y^{\prime}=2 a x+b$ is a linear function.

Example 8

Prove that the derivative of a cubic function is a quadratic function.

Let $y=f(x)$ be a cubic function, ie. let,

$$
y=a x^{3}+b x^{2}+c x+d \quad(a \neq 0)
$$

$\therefore y^{\prime}=3 a x^{2}+2 b x+c$
As $a \neq 0,3 a \neq 0$; hence, the derivative $y^{\prime}=3 a x^{2}+2 b x+c$ is a quadratic function.

Cf Higher Maths

$$
\begin{gathered}
\text { pg. 215-217 Ex. 9B } \\
\text { Q 3, 4, fa, b, c,e,h,j,k,l,m, } \\
6,7 a, b, c, f, 8 a, b, d
\end{gathered}
$$

Questions

3 For each of these functions:
i express the function in differentiable form
ii differentiate the function with respect to x.
a $y=(x-3)(x+5)$
b $\quad f(x)=(4 x+1)(2 x-3)$
c $y=x(x+3)(x-2)$
d $y=(x+2)\left(x^{2}+3 x-4\right)$
e $g(x)=2 x^{2}(x-1)^{2}$
f $y=(x+1)(x-3)^{2}$
g $y=(x+4)(x+1)(x-2)$

4 For each of these functions:
i express the function in differentiable form
ii differentiate the function with respect to x, expressing the answer with positive indices.
a $y=\frac{5}{x^{2}}$
b $y=\frac{7}{x^{4}}$
c $y=\frac{1}{2 x^{3}}$
d $f(x)=\frac{1}{6 x^{2}}$
e $g(x)=4 x^{3}-\frac{2}{x^{5}}$
f $y=\frac{4}{3 x}$
g $y=8 x+5-\frac{1}{x^{2}}$
h $y=\frac{4}{x^{3}}-\frac{3}{x}$
i $f(x)=\frac{3}{2 x^{4}}-5 x-6$

5 For each of these functions:
i express the function in differentiable form
ii differentiate the function with respect to x, expressing the answer in root form.
a $y=8 \sqrt{x}$
b $y=\sqrt[3]{x^{2}}$
c $f(x)=12\left(\sqrt[4]{x^{3}}\right)$
e $y=\sqrt{x^{7}}$
h $y=\frac{4}{\sqrt[4]{x}}$
j $y=\frac{9}{\sqrt[6]{x^{5}}}$
k $y=\frac{3}{2}\left(\sqrt[9]{x^{4}}\right)$
I $y=\frac{1}{8\left(\sqrt[5]{x^{6}}\right)}$
m $g(x)=\frac{5}{2\left(\sqrt[3]{x^{2}}\right)}$

6 For each of these functions:
i express the function in differentiable form
ii differentiate the function with respect to x, expressing the answer with positive indices
a $y=\frac{x^{2}-4}{x}$
b $y=\frac{3 x^{2}-5 x}{x^{2}}$
c $f(x)=\frac{4-x^{3}}{x}$
d $g(x)=\frac{x^{2}+5 x-3}{x^{2}}$
e $y=\frac{1-x^{4}}{2 x^{3}}$
f $y=\frac{x^{2}-3 x-2}{6 x^{3}}$
g $y=\frac{(x+1)(x+4)}{x^{2}}$
h $y=\frac{(3-x)(1+2 x)}{x^{2}}$
i $y=\frac{(x-2)(2 x+1)^{2}}{x^{3}}$

7 Differentiate these functions.
a $y=\sqrt{x}(x-3)$
b $\quad f(x)=\frac{3}{x^{2}}\left(x^{2}-\frac{1}{x}\right)$
c $g(x)=(1-\sqrt{x})\left(2-\frac{1}{\sqrt{x}}\right)$
f $y=\left(\frac{3}{x}-\frac{x}{3}\right)^{2}$

8 Differentiate these functions.
a $\quad f(x)=\frac{2-x^{3}}{\sqrt{x}}$
b $y=\frac{(x-2)^{2}}{4 \sqrt{x}}$
d $h(x)=\frac{(x-2)(\sqrt{x}+5)}{x \sqrt{x}}$

Answers

$$
\begin{array}{lll}
3 & \text { a } & x^{2}+2 x-15 \\
& 2 x+2 \\
& \text { b } & 8 x^{2}-10 x-3 \\
& 16 x-10 \\
& \text { c } & x^{3}+x^{2}-6 x \\
& 3 x^{2}+2 x-6 \\
& \text { d } & x^{3}+5 x^{2}+2 x-8 \\
& 3 x^{2}+10 x+2 \\
& \text { e } & 2 x^{4}-4 x^{3}+2 x^{2} \\
& 8 x^{3}-12 x^{2}+4 x \\
\text { f } & x^{3}-5 x^{2}+3 x+9 \\
& 3 x^{2}-10 x+3 \\
\text { g } & x^{3}+3 x^{2}-6 x-8 \\
& 3 x^{2}+6 x-6
\end{array}
$$

6 a $x-4 x^{-1}$
7 a $-\frac{3}{2 \sqrt{x}}+\frac{3 \sqrt{x}}{2}$
8 a $-\frac{1}{x^{\frac{3}{2}}}-\frac{5 x^{\frac{3}{2}}}{2}$
b $\frac{9}{x^{4}}$
c $\frac{1}{2 \sqrt{x^{3}}}-\frac{1}{\sqrt{x}}$
b $3-5 x^{-1}$
f $-\frac{18}{x^{3}}+\frac{2 x}{9}$
b $-\frac{1}{2 x^{\frac{3}{2}}}-\frac{1}{2 \sqrt{x}}+\frac{3 \sqrt{x}}{8}$
d $\frac{-5}{2 x^{\frac{3}{2}}}+\frac{2}{x^{2}}+\frac{15}{x^{\frac{5}{2}}}$
c $4 x^{-1}-x^{2}$
$-\frac{4}{x^{2}}-2 x$
d $1+5 x^{-1}-3 x^{-2}$
$\frac{6}{x^{3}}-\frac{5}{x^{2}}$
e $\frac{1}{2} x^{-3}-\frac{1}{2} x$
$-\frac{1}{2}-\frac{3}{2 x^{4}}$
f $-\frac{1}{3} x^{-3}-\frac{1}{2} x^{-2}+\frac{1}{6} x^{-1}$ $\frac{1}{x^{4}}+\frac{1}{x^{3}}-\frac{1}{6 x^{2}}$
g $1+4 x^{-2}+5 x^{-1}$
$-\frac{8}{x^{3}}-\frac{5}{x^{2}}$
h $5 x^{-1}+3 x^{-2}-2$
$-\frac{6}{x^{3}}-\frac{5}{x^{2}}$
i $4-4 x^{-1}-7 x^{-2}-2 x^{-3}$ $\frac{6}{x^{4}}+\frac{14}{x^{3}}+\frac{4}{x^{2}}$

