16 / 12 / 16

Circles - Lesson 2

Circles and Lines

LI

- Find the equation of a tangent line to a circle.
- Determine whether or not a straight line intersects a circle.

SC

- Equation of a circle.
- Equation of a straight line.
- Discriminants.
- Solving quadratic equations.

To find whether or not a line meets a circle, substitute the straight line equation into the circle equation.

This gives a quadratic (in x or y).
Analyse discriminant to determine possibilities.

$D>0$
Line meets circle twice

$$
D=0
$$

Line meets circle once (tangency)

$D<0$

Line does not meet circle

To find the equation of the tangent to a circle, we need :

- Gradient of line.
- Intersection point of line and circle.

Strategy

- Calculate gradient of radius (need centre of circle coords.).
- Perpendicularise this to get gradient of line: $m_{1} \times m_{2}=-1$.
- $y-b=m(x-a)$.

Example 1

Find the equation of the tangent to the circle

$$
x^{2}+y^{2}-4 x-2 y-3=0 \text { at }(4,3) .
$$

$$
x^{2}+y^{2}-4 x-2 y-3=0
$$

$$
x^{2}+y^{2}+2 g x+2 f y+c=0
$$

$$
2 g=-4 \Rightarrow g=-2
$$

$$
2 f=-2 \Rightarrow f=-1
$$

Centre: $(-g,-f)=\underline{(2,1)}$

$m_{\text {RAD. }}=\frac{3-1}{4-2}=1$
$\therefore \quad m_{\text {TAN. }}=-1$

$$
\begin{aligned}
y-b & =m(x-a) \\
y-3 & =-1(x-4) \\
y-3 & =-x+4 \\
y & =-x+7
\end{aligned}
$$

Example 2

Show that the line $x+3 y-11=0$ is a tangent to the circle $x^{2}+y^{2}+2 x+12 y-53=0$ and find the point of contact.

$$
\begin{gathered}
x^{2}+y^{2}+2 x+12 y-53=0 \\
x=11-3 y
\end{gathered}
$$

$$
(11-3 y)^{2}+y^{2}+2(11-3 y)+12 y-53=0
$$

$$
121-66 y+10 y^{2}+22-6 y+12 y-53=0
$$

$$
\begin{array}{r}
10 y^{2}-60 y+90=0 \\
y^{2}-6 y+9=0
\end{array}
$$

Either the discriminant can be evaluated or the quadratic can be solved (with only 1 solution) to show that the line is a tangent to the circle; we adopt the former method here, as the point of tangency is required:

$$
\begin{array}{r}
y^{2}-6 y+9=0 \\
(y-3)^{2}=0 \\
y=3
\end{array}
$$

As there is only solution for y, the line is a tangent to the circle.

$$
\begin{aligned}
& x=11-3 y \\
& x=11-3(3) \\
& x=2
\end{aligned}
$$

Point of contact : $(2,3)$

Example 3

Show that the line $y+x=0$ does not intersect the circle $x^{2}+y^{2}-4 x-8 y+11=0$.

$$
\begin{gathered}
x^{2}+y^{2}-4 x-8 y+11=0 \\
y=-x \\
x^{2}+(-x)^{2}-4 x-8(-x)+11=0 \\
\frac{2 x^{2}+4 x+11=0}{} \begin{array}{c}
a=2, b=4, c=11 \\
D=b^{2}-4 a c \\
D=4^{2}-4(2)(11) \\
D=16-88 \\
D=
\end{array} \\
=-72
\end{gathered}
$$

As $D<0$, there are no intersection points.

CfE Higher Maths

pg. 315-6 Ex. 14C All Q

