2 / 11 / 17

Unit 2 : Sequences and Series - Lesson 2

Arithmetic Series

LI

- Know what an Arithmetic Series is.
- Find the nth term formula for an arithmetic series.
- Solve problems involving arithmetic series.

<u>SC</u>

• Arithmetic of real numbers.

A series is obtained by adding the terms of a sequence

An arithmetic series (up to $\, n \,$ terms) is obtained by adding the first $\, n \,$ terms of an arithmetic sequence

The sum to n terms of an arithmetic sequence is:

$$S_n = \frac{n}{2}[2 a + (n - 1) d]$$

Example 1

Find the sum of the first 9 terms of the arithmetic sequence which starts 4, 10, 16,

$$S_n = \frac{n}{2}[2 a + (n - 1) d]$$

$$\therefore S_n = \frac{9}{2}[2(4) + (9 - 1)6]$$

$$\Rightarrow S_n = \frac{9}{2} (56)$$

$$\Rightarrow$$
 $S_n = 252$

Example 2

The sum of the first five terms of an arithmetic sequence is 85; the sum of the first 10 terms is 295.

Show that $S_n = R n^2 + T n$, stating the values of the constants R and T; also determine S_{20} .

S_n =
$$\frac{n}{2}[2 \, a + (n - 1) \, d]$$

S_s = 85

$$85 = \frac{5}{2}[2 \, a + (5 - 1) \, d] \qquad 295 = \frac{10}{2}[2 \, a + (10 - 1) \, d]$$

$$\Rightarrow \frac{34 = 2 \, a + 4 \, d} \qquad \Rightarrow \frac{59 = 2 \, a + 9 \, d}$$

$$2 \, a + 4 \, d = 34$$

$$2 \, a + 9 \, d = 59$$

$$\therefore \qquad 5 \, d = 25$$

$$\Rightarrow \qquad \frac{d = 5}{2}$$

$$2 \, a + 4 \, d = 34$$

$$\Rightarrow \qquad 2 \, a = 34 - 4 \, (5)$$

$$\Rightarrow \qquad 2 \, a = 14$$

$$\Rightarrow \qquad \frac{a = 7}{2}[2 \, a + (n - 1) \, d]$$

$$\therefore \qquad S_n = \frac{n}{2}[2 \, (7) + (n - 1) \, 5]$$

$$\Rightarrow \qquad S_n = \frac{n}{2}(5 \, n + 9)$$

$$\Rightarrow \qquad S_n = \frac{5}{2}(5 \, n^2 + \frac{9}{2}n)$$

$$(R = 5/2, T = 9/2)$$

$$S_{20} = \frac{5}{2}(20)^2 + \frac{9}{2}(20)$$

Example 3

When does the sum of the arithmetic sequence which starts $1, 7, 13, 19, \ldots$ first exceed 100?

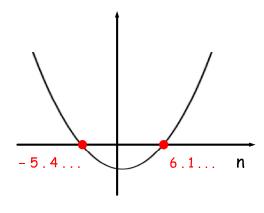
$$S_n = \frac{n}{2} [2 a + (n - 1) d]$$

$$\therefore S_n = \frac{n}{2} [2 (1) + (n - 1) 6]$$

$$\Rightarrow S_n = \frac{n}{2} (6 n - 4)$$

$$\Rightarrow \qquad S_n = 3 n^2 - 2 n$$

$$S_n > 100$$


$$\therefore 3 n^2 - 2 n > 100$$

$$\Rightarrow$$
 3 n² - 2 n - 100 > 0

This quadratic inequation is solved in the usual way; solving the associated quadratic equation gives the solutions,

$$n = 6.1..., -5.4...$$

As
$$n > 0$$
, $n \neq -5.4...$

$$n = 7$$

AH Maths - MiA (2nd Edn.)

pg. 153-5 Ex. 9.2 Q 1 - 4, 6,
 7, 11, 13.

Ex. 9.2

- 1 a Calculate the sum to 10 terms of the arithmetic series which starts $2 + 8 + 14 + \dots$
 - b Find S_{16} for an arithmetic series when $u_1 = 7$, $u_2 = 28$ and $u_3 = 49$.
 - c Find the required sum when each of these is an AP.

$$i 4 + 9 + 14 + \dots : S_{20}$$

ii
$$6 + 20 + 34 + \dots : S_{50}$$

iii
$$(-1) + (-8) + (-15) + \dots : S_{15}$$

iv
$$-9 - 7 - 5 - \dots : S_{10}$$

- 2 The first two terms of an arithmetic sequence are 14 and 25 in that order.
 - a Find the sum of the first 15 terms and the first 16 terms.
 - b Hence calculate the 16th term.
 - c Repeat this process for if the first two terms are 25 and 14 in that order.
- 3 Find these sums, given that each is an arithmetic series.

a
$$7 + 8 + 9 + ... + 40$$

$$c -16 + (-18) + ... + (-54)$$

$$f \frac{1}{12} + \frac{1}{6} + \frac{1}{4} + \frac{1}{3} + \dots + 5$$

4 a The sum of the first 80 terms of an arithmetic series is 25 680.

The common difference is 8. What is the first term?

b The sum of the first 41 terms of an arithmetic series is 0.

The common difference is 7. What is the first term?

- **6** a An arithmetic series starts with 8, has 20 terms and totals 2440. Calculate the common difference.
 - b The first 60 terms of an arithmetic progression sum to 891. If the first term is 0.1, what is the common difference?
- 7 a The first three terms of an arithmetic sequence total 30. The next three total 69. What is the sum of the three after that?
 - b The sum of the first four terms of an arithmetic sequence is -2. The next three total 51. What is the 16th term?
- 11 A roll of sticky tape is wound round a spindle of radius 5 cm.

The tape is 0.05 cm thick.

- a Taking each complete winding as approximately circular, and keeping π in your answer, find the circumference of each of the first five windings.
- b If there are 200 windings on the roll calculate the total length of tape on the roll.
- An arithmetic sequence starts a_1 , a_2 , a_3 , a_4 , a_5 , a_6 , ... Show that the terms $(a_1 + a_2 + a_3)$, $(a_4 + a_5 + a_6)$, $(a_7 + a_8 + a_9)$, ... also form an arithmetic sequence.

Answers to AH Maths (MiA), pg. 153-5, Ex. 9.2

```
1 a 290
```

$$c -700$$

$$d - 468$$

$$-468$$
 e 7.8 f 152.5

b
$$-140$$

11 a
$$10.1\pi$$
, 10.2π , 10.3π , 10.4π , 10.5π

b
$$4010 \, \pi \, \text{cm}$$

13 The terms are 3a + 3d, 3a + 12d, 3a + 21d, ... which is an arithmetic sequence with first term 3a and common difference 9d. Proof by induction.