2 / 11 / 17

Unit 2 : Sequences and Series - Lesson 2

Arithmetic Series

LI

- Know what an Arithmetic Series is.
- Find the $n^{\text {th }}$ term formula for an arithmetic series.
- Solve problems involving arithmetic series.

SC

- Arithmetic of real numbers.

A series is obtained by adding the terms of a sequence

An arithmetic series (up to n terms) is obtained by adding the first n terms of an arithmetic sequence

The sum to n terms of an arithmetic sequence is:

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

Example 1

Find the sum of the first 9 terms of the arithmetic sequence which starts $4,10,16, \ldots$.

$$
\begin{array}{ll}
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
\therefore & S_{n}=\frac{9}{2}[2(4)+(9-1) 6] \\
\Rightarrow & S_{n}=\frac{9}{2}(56) \\
\Rightarrow & S_{n}=252
\end{array}
$$

Example 2

The sum of the first five terms of an arithmetic sequence is 85 ; the sum of the first 10 terms is 295.

Show that $S_{n}=R n^{2}+T n$, stating the values of the constants R and T; also determine S_{20}.

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

$85=\frac{5}{2}[2 a+(5-1) d] \quad 295=\frac{10}{2}[2 a+(10-1) d]$
$\Rightarrow 34=2 a+4 d \quad \Rightarrow 59=2 a+9 d$

$$
\begin{aligned}
& 2 a+4 d=34 \\
& 2 a+9 d=59 \\
& \therefore \quad 5 d=25 \\
& \Rightarrow \quad \underline{d}=5 \\
& 2 a+4 d=34 \\
& \Rightarrow \quad 2 a=34-4(5) \\
& \Rightarrow \quad 2 a=14 \\
& \Rightarrow \quad a=7 \\
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& \therefore \quad S_{n}=\frac{n}{2}[2(7)+(n-1) 5] \\
& \Rightarrow \quad S_{n}=\frac{n}{2}(5 n+9) \\
& \Rightarrow \quad \begin{array}{l}
S_{n}=\frac{5}{2} n^{2}+\frac{9}{2} n \\
(R=5 / 2, T=9 / 2)
\end{array} \\
& S_{20}=\frac{5}{2}(20)^{2}+\frac{9}{2}(20) \\
& \Rightarrow \quad S_{20}=1090
\end{aligned}
$$

Example 3

When does the sum of the arithmetic sequence which starts $1,7,13,19, \ldots$ first exceed 100 ?

$$
\begin{array}{cc}
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
\therefore & S_{n}=\frac{n}{2}[2(1)+(n-1) 6] \\
\Rightarrow & \\
\Rightarrow & S_{n}=\frac{n}{2}(6 n-4) \\
& \\
\therefore & 3 n_{n}>100 \\
\Rightarrow & 3 n^{2}-2 n>100
\end{array}
$$

This quadratic inequation is solved in the usual way; solving the associated quadratic equation gives the solutions,

$$
n=6.1 \ldots,-5.4 \ldots
$$

As $n>0, n \neq-5.4 \ldots$.

$$
n=7
$$

$$
\begin{array}{r}
\text { AH Maths - MiA (} 2^{\text {nd }} \text { Edn.) } \\
\text { - pg. 153-5 Ex. } 9.2 \text { Q } 1-4,6, \\
7,11,13 .
\end{array}
$$

Ex. 9.2

1 a Calculate the sum to 10 terms of the arithmetic series which starts $2+8+14+\ldots$.
b Find S_{16} for an arithmetic series when $u_{1}=7, u_{2}=28$ and $u_{3}=49$.
c Find the required sum when each of these is an AP.

$$
\begin{array}{ll}
\text { i } 4+9+14+\ldots: S_{20} & \text { ii } 6+20+34+\ldots: S_{50} \\
\text { iii }(-1)+(-8)+(-15)+\ldots: S_{15} & \text { iv }-9-7-5-\ldots: S_{10}
\end{array}
$$

2 The first two terms of an arithmetic sequence are 14 and 25 in that order.
a Find the sum of the first 15 terms and the first 16 terms.
b Hence calculate the 16th term.
c Repeat this process for if the first two terms are 25 and 14 in that order.
3 Find these sums, given that each is an arithmetic series.
a $7+8+9+\ldots+40$
b $17+24+31+\ldots+360$
c $-16+(-18)+\ldots+(-54)$
d $5-3-11-\ldots-83$
e $0.3+0.7+1.1+\ldots+2.3$
f $\frac{1}{12}+\frac{1}{6}+\frac{1}{4}+\frac{1}{3}+\ldots+5$

4 a The sum of the first 80 terms of an arithmetic series is 25680.
The common difference is 8 . What is the first term?
b The sum of the first 41 terms of an arithmetic series is 0 .
The common difference is 7 . What is the first term?
6 a An arithmetic series starts with 8, has 20 terms and totals 2440 .
Calculate the common difference.
b The first 60 terms of an arithmetic progression sum to 891 . If the first term is 0.1 , what is the common difference?

7 a The first three terms of an arithmetic sequence total 30 . The next three total 69 . What is the sum of the three after that?
b The sum of the first four terms of an arithmetic sequence is -2 .
The next three total 51 . What is the 16 th term?
11 A roll of sticky tape is wound round a spindle of radius 5 cm . The tape is 0.05 cm thick.
a Taking each complete winding as approximately circular, and keeping π in your answer, find the circumference of each of the first five windings.
b If there are 200 windings on the roll calculate the total length of tape on the roll.
13 An arithmetic sequence starts $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, \ldots$
Show that the terms $\left(a_{1}+a_{2}+a_{3}\right),\left(a_{4}+a_{5}+a_{6}\right),\left(a_{7}+a_{8}+a_{9}\right), \ldots$ also form an arithmetic sequence.

Answers to AH Maths (MiA), pg. 153-5, Ex. 9.2

1	a	290	b	2632		
	c	i 1030	ii	17450	iii	-750
2	a	1365,1544	b	179	c	-780,
3	a	799	b	9425	c	-700
	d	-468	e	7.8	f	152.5
4	a	5	b	-140		
6	a	12	b	0.5		
7	a	108	b	67		
11	a	$10.1 \pi, 10.2 \pi, 10.3 \pi, 10.4 \pi, 10.5 \pi$				
	b	$4010 \pi \mathrm{~cm}$				

13 The terms are $3 a+3 d, 3 a+12 d, 3 a+21 d, \ldots$ which is an arithmetic sequence with first term $3 a$ and common difference 9 d . Proof by induction.

