9 / 2 / 18
 Vectors, Lines and Planes - Lesson 1

The Vector Product and the Scalar Triple Product

LI

- Calculate the Vector Product of 2 vectors.
- Calculate the Scalar Triple Product of 3 vectors.

SC

- Vector Product Formulae.
- Determinants.

The vector product (aka cross product) of 2 vectors a and \underline{b} is the vector,

$$
\underline{\mathbf{a}} \times \underline{\mathbf{b}}=|\underline{\mathbf{a}}||\underline{\mathbf{b}}| \sin \theta \underline{\mathbf{n}} \quad \text { (vector form) }
$$

where \underline{n} is a unit vector at right angles to both \underline{a} and \underline{b}, and θ is the angle from \underline{a} to \underline{b}. The 3 vectors $\underline{a}, \underline{b}$ and $\underline{a} \times \underline{b}$ form a right-handed system:

The component form of the vector product of $\underline{\mathbf{a}}=a_{1} \underline{\boldsymbol{i}}+a_{2} \boldsymbol{j}+a_{3} \underline{\boldsymbol{k}}$ and $\underline{\boldsymbol{b}}=b_{1} \underline{i}+b_{2} \boldsymbol{j}+b_{3} \underline{\boldsymbol{k}}$ is,

$$
\underline{\boldsymbol{a}} \times \underline{\boldsymbol{b}}=\left(\begin{array}{l}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right)
$$

Vector Product Properties

$$
\begin{array}{ll}
\text { For the unit vectors } \underline{\mathbf{i}}, \mathbf{j} \text { and } \underline{\mathbf{k}}: \\
\underline{\mathbf{i}} \times \underline{\mathbf{j}}=\underline{\mathbf{k}} & \underline{\mathbf{i}} \times \underline{\mathbf{i}}=\underline{\mathbf{0}} \\
\mathbf{j} \times \underline{\mathbf{k}}=\underline{\mathbf{i}} & \underline{\mathbf{j}} \times \underline{\mathbf{j}}=\underline{\mathbf{0}} \\
\underline{\mathbf{k}} \times \underline{\mathbf{i}}=\underline{\mathbf{j}} & \underline{\mathbf{k}} \times \underline{\mathbf{k}}=\underline{\mathbf{0}}
\end{array}
$$

For any vectors $\underline{\mathbf{a}}, \underline{\mathbf{b}}$ and $\underline{\mathbf{c}}$:

- $\underline{a} \times \underline{a}=\underline{0}$
- $\underline{a} \times \underline{b}=-(\underline{b} \times \underline{a})$
- $\underline{a} \times(\underline{b}+\underline{c})=(\underline{a} \times \underline{b})+(\underline{a} \times \underline{c})$
- $(\underline{a}+\underline{b}) \times \underline{c}=(\underline{a} \times \underline{c})+(\underline{b} \times \underline{c})$

For any non-zero vectors \underline{a} and \underline{b} :

$$
\underline{\mathbf{a}} \times \underline{\mathbf{b}}=\underline{\mathbf{0}}
$$

$\underline{\mathbf{a}}, \underline{\mathbf{b}}$ are parallel $(\underline{\mathbf{a}}=k \underline{b}, k \in \mathbb{R})$

The scalar triple product of 3 vectors $\underline{\mathbf{a}}$, \underline{b} and \underline{c} (in that order!) is the scalar,

$$
[\underline{a}, \underline{\boldsymbol{b}}, \underline{\mathbf{c}}]=\underline{\mathbf{a}} \cdot(\underline{\boldsymbol{b}} \times \underline{\mathbf{c}})=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

Example 1

Find $\underline{a} \times \underline{b}$ for the following:

$$
\begin{array}{ll}
& \underline{60^{\circ}} \\
\therefore & \underline{a} \times \underline{\mathbf{n}}=|\underline{a}||\underline{b}| \sin \theta \underline{\mathbf{n}} \\
\Rightarrow & \underline{a} \times \underline{a}=3 \sqrt{2} \sin 300^{\circ} \underline{n} \\
\Rightarrow & \underline{a} \times \underline{b}=-\frac{3 \sqrt{3} \sqrt{2}}{2} \underline{n}
\end{array}
$$

Example 2
If $\underline{\mathbf{a}}=2 \underline{\mathbf{i}}-5 \mathbf{j}+3 \underline{\mathbf{k}}$ and $\underline{\mathbf{b}}=4 \underline{\mathbf{i}}-11 \mathbf{j}-7 \underline{\mathbf{k}}$,
find $\underline{a} \times \underline{b}$.

$$
\begin{aligned}
& \underline{\mathbf{a}} \times \underline{\mathbf{b}}=\left(\begin{array}{c}
2 \\
-5 \\
3
\end{array}\right) \times\left(\begin{array}{c}
4 \\
-11 \\
-7
\end{array}\right) \\
\therefore & \underline{\mathbf{a}} \times \underline{b}=\left(\begin{array}{r}
(-5)(-7)-3(-11) \\
(3)(4)-2(-7) \\
(2)(-11)-(-5)(4)
\end{array}\right) \\
\Rightarrow & \underline{a} \times \underline{b}=\left(\begin{array}{c}
68 \\
26 \\
-2
\end{array}\right)
\end{aligned}
$$

Example 3

Find a unit vector in the direction of $\underline{\mathbf{n}}$ if $\underline{\mathbf{a}}, \underline{\mathbf{b}}$ and $\underline{\boldsymbol{n}}$ form a right-handed system of vectors, where,
$\underline{\mathbf{a}}=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right), \underline{\mathbf{b}}=\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$.

$$
\begin{array}{r}
\underline{\mathbf{a}} \times \underline{\mathbf{b}}=\left(\begin{array}{c}
1 \\
1 \\
1
\end{array}\right) \times\left(\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right) \\
\therefore \quad \underline{\mathbf{a}} \times \underline{\mathbf{b}}=\left(\begin{array}{c}
(1)(1)-(-1)(-1) \\
(-1)(1)-(1)(1) \\
(1)(-1)-(1)(1)
\end{array}\right)
\end{array}
$$

$$
\Rightarrow \quad \underline{a} \times \underline{b}=\left(\begin{array}{c}
0 \\
-2 \\
-2
\end{array}\right)
$$

$$
\therefore \quad|\underline{a} \times \underline{b}|=\sqrt{8}
$$

A unit vector in the direction of \underline{n} is,

$$
\frac{1}{\sqrt{8}}\left(\begin{array}{c}
0 \\
-2 \\
-2
\end{array}\right)=-\frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

Example 4

Show that no value of p makes the vectors $\underline{a}=2 p \underline{i}+\boldsymbol{j}-3 \underline{\mathbf{k}}$ and $\underline{\mathbf{b}}=-\mathbf{7} \underline{\mathbf{i}}+\mathrm{p} \mathbf{j}-\underline{\mathbf{k}}$ parallel.
$\underline{\boldsymbol{a}}=\left(\begin{array}{c}2 p \\ 1 \\ -3\end{array}\right), \underline{\boldsymbol{b}}=\left(\begin{array}{c}-7 \\ p \\ -1\end{array}\right)$.

$$
\begin{aligned}
& \underline{\mathbf{a}} \times \underline{\boldsymbol{b}}=\left(\begin{array}{c}
2 p \\
1 \\
-3
\end{array}\right) \times\left(\begin{array}{c}
-7 \\
p \\
-1
\end{array}\right) \\
& \therefore \quad \underline{a} \times \underline{b}=\left(\begin{array}{c}
-1+3 p \\
21+2 p \\
2 p^{2}+7
\end{array}\right) \\
& 2 p^{2}+7 \neq 0(p \in \mathbb{R}) \Rightarrow \underline{a} \times \underline{b} \neq \underline{0} \Rightarrow \underline{a}, \underline{b} \text { not parallel }
\end{aligned}
$$

Example 5

Find $[\underline{b}, \underline{\mathbf{a}}, \underline{c}](=\underline{\mathbf{b}} \cdot(\underline{\mathbf{a}} \times \underline{\mathbf{c}}))$ if $\underline{\mathbf{a}}=3 \underline{\mathbf{i}}+2 \mathbf{j}-\underline{\mathbf{k}}$, $\underline{b}=-2 \underline{\mathbf{i}}+5 \underline{\mathbf{k}}$ and $\underline{\mathbf{c}}=-\underline{\mathbf{i}}+\boldsymbol{j}+4 \underline{\mathbf{k}}$.

The vector product $\underline{a} \times \underline{c}$ can be evaluated first and then this 'dotted' with $\underline{\mathbf{b}}$. Alternatively, the determinant formula can be used.

$$
\begin{aligned}
& \quad[\underline{b}, \underline{a}, \underline{c}]=\left|\begin{array}{lll}
b_{1} & b_{2} & b_{3} \\
a_{1} & a_{2} & a_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=\left|\begin{array}{rrr}
-2 & 0 & 5 \\
3 & 2 & -1 \\
-1 & 1 & 4
\end{array}\right| \\
& \therefore \quad[\underline{b}, \underline{a}, \underline{c}]=-2\left|\begin{array}{rr}
2 & -1 \\
1 & 4
\end{array}\right|-0\left|\begin{array}{rr}
3 & -1 \\
-1 & 4
\end{array}\right|+5\left|\begin{array}{rr}
3 & 2 \\
-1 & 1
\end{array}\right| \\
& \Rightarrow \quad[\underline{b}, \underline{a}, \underline{c}]=-2(8+1)-0+5(3+2) \\
& \Rightarrow \quad[\underline{b}, \underline{a}, \underline{c}]=7
\end{aligned}
$$

$$
\begin{aligned}
& \text { AH Maths - MiA (2 }{ }^{\text {nd }} \text { Edn.) } \\
& \text { - pg. 284-5 Ex. } 15.2 \text { Q } 1 \text { a, e,f. } \\
& \text { - pg. 286-7 Ex. } 15.3 \\
& \text { Q } 1 \text { a, b, } 2 \text { c, d, } 8 \text { c. } \\
& \text { - pg. 288-9 Ex. } 15.4 \text { Q } 1,6 .
\end{aligned}
$$

Ex. 15.2

1 Copy each diagram and add $\mathbf{a} \times \mathbf{b}$ in each case, indicating the magnitude and direction clearly. The normal to the plane occupied by \mathbf{a} and \mathbf{b} is indicated in each case and a statement is included to clarify the ambiguity caused by optical illusion.

b is nearer

a comes out of the page
f

a comes out of the page

1 Evaluate
a $\left|\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \times\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\right|$
b $\left|\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right) \times\left(\begin{array}{l}4 \\ 5 \\ 6\end{array}\right)\right|$

2 Express $\overrightarrow{\mathrm{PQ}} \times \overrightarrow{\mathrm{PR}}$ in component form for each set of coordinates.
c $\mathrm{P}(0,5,3), \mathrm{Q}(-1,2,-1), \mathrm{R}(6,0,0)$
d $\mathrm{P}(-40,4), \mathrm{Q}(0,3,2), \mathrm{R}(-6,5,-3)$
$8 \mathrm{p}, \mathrm{q}$ and n form a right-handed system of vectors. Find the unit vector in the direction of n when p and q are given by
c $\quad \mathrm{p}=\left(\begin{array}{l}2 \\ 3 \\ 0\end{array}\right), \quad \mathrm{q}=\left(\begin{array}{r}1 \\ -1 \\ 0\end{array}\right)$

Ex. 15.4

1 By evaluating both expressions, verify that $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$, given $a=2 i+j+3 k, b=5 i+3 j-2 k$ and $c=-i+2 j+4 k$.

6 Given $\mathbf{a}=2 \mathrm{i}-\mathrm{j}+3 \mathrm{k}, \mathrm{b}=\mathrm{i}+4 \mathrm{j}-2 \mathrm{k}$ and $\mathrm{c}=-\mathrm{i}+2 \mathrm{j}+t \mathrm{k}$, for what value of t is $\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}=33$?

Answers to AH Maths (MiA), pg. 284-5, Ex. 15.2

e

f

Answers to AH Maths (MiA), pg. 286-7, Ex. 15.3

1 a 1
$2 c\left(\begin{array}{r}-11 \\ -27 \\ 23\end{array}\right)$
d $\left(\begin{array}{r}-11 \\ 32 \\ 26\end{array}\right)$

8 c $\quad-k$

Answers to AH Maths (MiA), pg. 288-9, Ex. 15.4
1 Verification, both equal 53.
61

