$28 / 2 / 18$
Number Theory - Lesson 1

The Euclidean Algorithm and the GCD

LI

- Know the Division and Euclidean Algorithms.
- Use the Euclidean Algorithm to find the GCD of two numbers.
- Express the GCD of two numbers in the form $a x+b y$.
- Determine whether or not two numbers are coprime.

SC

- Division with remainders.

The Division Algorithm states that, given $a, b \in \mathbb{N}, \exists$ unique $q, r \in \mathbb{N}$ satisfying,

The greatest common divisor (GCD) (aka highest common factor (HCF)) of $a, b \in \mathbb{N}$ - denoted by $\operatorname{GCD}(a, b)$ or just (a, b) - is the biggest natural number that exactly divides both a and b

$$
\text { When } a=b q+r(0 \leq r<b),(a, b)=(b, r)
$$

Note that $(p, 0)=p$, for any $p \in \mathbb{N}$
Note that $(p, 1)=1$, for any $p \in \mathbb{N}$

$$
\begin{gathered}
\text { Repeated use of the the Division Algorithm gives the } \\
\text { Euclidean Algorithm to work out }(a, b): \\
\begin{array}{ccc}
a=b q_{1}+r_{1} & \left(0 \leq r_{1}<b\right) & (a, b)=\left(b, r_{1}\right) \\
b=r_{1} q_{2}+r_{2} & \left(0 \leq r_{2}<r_{1}\right) & \left(b, r_{1}\right)=\left(r_{1}, r_{2}\right) \\
r_{1}=r_{2} q_{3}+r_{3} & \left(0 \leq r_{3}<r_{2}\right) & \left(r_{1}, r_{2}\right)=\left(r_{2}, r_{3}\right) \\
\vdots & \vdots & \vdots \\
r_{k-2}=r_{k-1} q_{k}+0 & \left(0<r_{k-1}\right) & \left(r_{k-2}, r_{k-1}\right)=\left(r_{k-1}, 0\right)
\end{array} \\
\text { Then (a,b)=} \begin{array}{c}
\text { Th -1 }
\end{array}
\end{gathered}
$$

For any $a, b \in \mathbb{N}$, the Euclidean algorithm can be used to write (a, b) as,

$$
(a, b)=a x+b y \quad(x, y \in \mathbb{Z})
$$

Two numbers $a, b \in \mathbb{N}$ are relatively prime (aka coprime) if $(a, b)=1$

Example 1

Write $(30,42)$ in the form $30 x+42 y$, stating the values of x and y.

$$
\begin{array}{rlr}
42=30.1+12 & (42,30)=(30,12) \\
30=12.2+6 & (30,12)=(12,6) \\
12=6.2+0 & (12,6)=(6,0)=6 \\
\therefore & & \\
& (42,30)=6 &
\end{array}
$$

Solving for the remainders above gives,

$$
\begin{aligned}
& 12=42-30.1 \\
& 6=30-12.2 \\
& \therefore \quad 6=30-(42-30.1) .2 \\
& \Rightarrow \quad 6=30-42.2+30.2 \\
& \Rightarrow \quad 6=30.3-42.2 \\
& \therefore \quad(30,42)=30 x+42 y(x=3, y=-2)
\end{aligned}
$$

Example 2

Determine whether or not 4 and 7 are coprime.

$$
\begin{array}{rlr}
7=4.1+3 & (7,4)=(4,3) \\
4=3.1+1 & (4,3)=(3,1) \\
3=1.3+0 & (3,1)=1 \\
\therefore & & \\
& & (4,7)=1 \\
& \text { As }(4,7)=1,4 \text { and } 7 \text { are coprime }
\end{array}
$$

AH Maths - MiA (2 ${ }^{\text {nd }}$ Edn.)
 - pg. 318 Ex. 16.3 Q 1 a-c.
 - pg. 320 Ex. 16.4 Q 1-4.

Ex. 16.3

1 Find the GCD of each of these pairs of numbers using the Euclidean algorithm.
a 111 and 481
b 451 and 168
c 679 and 388

Ex. 16.4

1 Find the greatest common divisor of 345 and 285 and express it in the form $345 s+285 t$, where $s, t \in Z$.
2 Calculate $(583,318)$ and express it in the form $583 s+318 t$, where $s, t \in Z$.
3 a Evaluate $d=(1292,1558)$.
b Hence, express d in the form $1292 s+1558 t$ where $s, t \in Z$.
4 a Show that 763 and 662 are relatively prime.
b Use this fact to express 1 as the sum of multiples of 763 and 662.
c Repeat this for the numbers 1479 and 1178.

Answers to AH Maths (MiA), pg. 318, Ex. 16.3
1 a 37
b 1
c 97

Answers to AH Maths (MiA), pg. 320, Ex. 16.4

$$
\begin{array}{llll}
1 & 15 ; 5.345-6.285=15 & & \\
2 & 53 ; 2.318-1.583=53 & & \\
3 & \text { a } 38 & \text { b } & 5.1558-6.1292 \\
4 & \text { a } \quad \text { GCD }=1 & \text { b } & 59.763-68.662 \\
\text { c } 398.1178-317.1479 & &
\end{array}
$$

