$24 / 10 / 16$

Solving Trigonometric Equations - Lesson 1

Solving Linear Trigonometric Equations

LI

- Solve trigonometric equations of the form :

$$
\begin{aligned}
& a \sin (b x+c)+d=0 \\
& a \cos (b x+c)+d=0 \\
& a \tan (b x+c)+d=0
\end{aligned}
$$

for various ranges of x (in degrees or radians).
SC

- Trig. Graphs.
- Related Acute Angle.

Strategy

- If $f(x)$ is one of $\sin (b x+c), \cos (b x+c)$ or $\tan (b x+c)$, get equation into the form :

$$
f(x)=k
$$

- Sketch the graphs of $y=f(x)$ and $y=k$ for the relevant range of x-values to see how many times the graphs cross in this range (and roughly where the solutions are); these intersection points give the solutions for x.
- Find related acute angle.
- Use ASTC diagram to find (normally 2 distinct) solutions.
- Use graph (or relevant range of x-values) to get any other solutions (and possibly eliminating some solutions).

Example 1
Solve $4 \tan x^{\circ}-3=0(0 \leq x \leq 360)$.

$$
\begin{aligned}
4 \tan x^{\circ}-3 & =0 \\
\tan x^{\circ} & =0.75
\end{aligned}
$$

$$
\begin{aligned}
& 2 \text { solutions expected } \\
& \tan x^{\circ}=0.75 \\
& \therefore \quad \text { aAA }=\tan ^{-1}(0.75) \\
& \Rightarrow \quad \text { aAA }=36.86 \ldots{ }^{\circ} \\
& \tan \text { is }+v e \\
& \therefore x^{\circ}=36.86 \ldots{ }^{\circ}, 180^{\circ}+36.86 \ldots{ }^{\circ} \\
& \Rightarrow x^{\circ}=36.9^{\circ}, 216.9^{\circ} \text { (to } 1 \text { dep.) }
\end{aligned}
$$

From the graph, we expect one more solution; as $\sin p$ is periodic with period 2π, other solutions are obtained by subtracting 2π from the solutions obtained so far. Hence, other possible solutions are,

$$
\begin{aligned}
p & =7 \pi / 6-2 \pi, 11 \pi / 6-2 \pi \\
\Rightarrow \quad p & =-5 \pi / 6,-\pi / 6
\end{aligned}
$$

As $-\pi / 2 \leq p \leq 2 \pi,-5 \pi / 6$ must be rejected, as it is out of this range. So,

$$
p=-\pi / 6,7 \pi / 6,11 \pi / 6
$$

Example 3

Solve $3 \cos x-2=0(0 \leq x \leq 2 \pi)$.

2 solutions expected
$\cos x=2 / 3$
$\therefore \quad \mathrm{RAA}=\cos ^{-1}(2 / 3)$
$\Rightarrow \quad \underline{R A A}=0.841 \ldots$
\cos is + we

$\therefore x=0.841 \ldots, 2 \pi-0.841 \ldots$
$\Rightarrow x=0.841,5.442$ (to 3 d.p.)

Example 4

Solve $5 \tan 2 x^{\circ}=3(0 \leq x \leq 360)$.

$$
\begin{aligned}
5 \tan 2 x^{\circ} & =3 \\
\tan 2 x^{\circ} & =3 / 5
\end{aligned}
$$

4 solutions expected

$$
\begin{array}{rlrl}
& & \tan 2 x^{\circ} & =3 / 5 \\
\therefore & \text { RAA } & =\tan ^{-1}(3 / 5) \\
& & \text { RAA } & =30.96 \ldots{ }^{\circ}
\end{array}
$$

$$
\tan \text { is }+ \text { ve }
$$

$$
\begin{array}{l|r}
S & \\
180^{\circ}-R A A & R A A \\
& \\
\hline \checkmark & \\
\hline 180^{\circ}+R A A & 360^{\circ}-R A A \\
T & C
\end{array}
$$

$$
\therefore 2 x^{\circ}=30.96 \ldots 0^{\circ}, 180^{\circ}+30.96 \ldots{ }^{\circ}
$$

$$
\Rightarrow 2 x^{\circ}=30.96 \ldots{ }^{\circ}, 210.96 \ldots{ }^{\circ}
$$

As tan is periodic with period 180°, the other 2 solutions are obtained by constantly adding 180° to the above two values for $2 x^{\circ}$ until we reach 2 more different values for $2 x^{\circ}$ up to 720° (as $0 \leq x \leq 360,0 \leq 2 x \leq 720$).

$$
\begin{aligned}
& \therefore \quad 2 x^{\circ}= 30.96 \ldots{ }^{\circ}, 210.96 \ldots{ }^{\circ} \\
& 390.96^{\circ}, 570.96 \ldots{ }^{\circ} \\
& \Rightarrow \quad x^{\circ}=15.5^{\circ}, 105.5^{\circ}, 195.5^{\circ}, 285.5^{\circ}
\end{aligned}
$$

Example 5 (non-calculator)
Solve $2 \sin (3 \theta+\pi / 4)-1=0(0<\theta \leq 2 \pi)$.
$2 \sin (3 \theta+\pi / 4)-1=0$
$\sin (3 \theta+\pi / 4)=1 / 2$

6 solutions expected
$\sin (3 \theta+\pi / 4)=1 / 2$
$\therefore \quad$ RAA $=\sin ^{-1}(0.5)$
$\Rightarrow \quad$ RAA $=\pi / 6$
\sin is + ve

$\therefore 3 \theta+\pi / 4=\pi / 6, \pi-\pi / 6$
$\Rightarrow 3 \theta=-\pi / 12,7 \pi / 12$
As \sin is periodic with period 2π, the other 4 solutions are obtained by adding 2π to the above values for 3θ until we reach values for 3θ between 0 and 6π (as $0<\theta \leq 2 \pi$, $0<3 \theta \leq 6 \pi$). Also, note that $6 \pi=72 \pi / 12$.

$$
\begin{aligned}
\therefore 3 \theta= & -\pi / 12,7 \pi / 12,23 \pi / 12,31 \pi / 12, \\
& 47 \pi / 12,55 \pi / 12,71 \pi / 12,79 \pi / 12
\end{aligned}
$$

Taking the values that are in the relevant range ($0<3 \theta \leq 72 \pi / 12$), we have,

$$
\begin{aligned}
\theta= & 7 \pi / 36,23 \pi / 36,31 \pi / 36 \\
& 47 \pi / 36,55 \pi / 36,71 \pi / 36
\end{aligned}
$$

CfE Higher Maths

pg. 172 Ex. 8A All Q
pg. 174-6 Ex. 8B All Q
pg. 182-4 Ex. 8D All Q

